answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
2 years ago
15

Two identical masses are connected to two different flywheels that are initially stationary. Flywheel A is larger and has more m

ass, but has hexagonal sections where material has been removed. The attached masses are released from rest and allowed to fall a height h.Which of the following statements about their angular accelerations is true? a. The angular acceleration of the two flywheels is different but it is impossible to tell which is greater. b. The angular acceleration of flywheel A is greater The angular acceleration of flywheel B is greater. c. Not enough information is provided to determine. d. The angular accelerations of the two flywheels are equal.
Physics
1 answer:
inysia [295]2 years ago
4 0

Answer:

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

c) True. Information is missing to perform the calculation

Explanation:

Let's consider solving this exercise before seeing the final statements.

We use Newton's second law Rotational

      τ = I α

     T r = I α

     T gR = I α

     Alf = T R / I (1)

     T = α I / R

Now let's use Newton's second law in the mass that descends

     W- T = m a

     a = (m g -T) / m

The two accelerations need related

     a = R α

    α = a / R

    a = (m g - α I / R) / m

    R α = g - α I /m R

    α (R + I / mR) = g

    α = g / R (1 + I / mR²)

We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant

Let's review the claims

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

b) False. Missing data for calculation

c) True. Information is missing to perform the calculation

d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases

You might be interested in
5.16 An insulated container, filled with 10 kg of liquid water at 20 C, is fitted with a stirrer. The stirrer is made to turn by
Anna007 [38]

Answer:

a) W=2.425kJ

b) \Delta E=2.425kJ

c) T_f=20.06^{o}C

d) Q=-2.425kJ

Explanation:

a)

First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)

The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

W=Fd

Where:

W=work done [J]

F= force applied [N]

d= distance [m]

In this case since it will be a vertical movement, the force is calculated like this:

F=mg

and the distance will be the height

d=h

so the formula gets the following shape:

W=mgh

so now e can substitute:

W=(25kg)(9.7 m/s^{2})(10m)

which yields:

W=2.425kJ

b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

\Delta E=2.425kJ

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

\Delta Q=mC_{p}(T_{f}-T_{0})

Where:

Q= heat transferred

m=mass

C_{p}=specific heat

T_{f}= Final temperature.

T_{0}= initial temperature.

So we can solve the forula for the final temperature so we get:

T_{f}=\frac{\Delta Q}{mC_{p}}+T_{0}

So now we can substitute the data we know:

T_{f}=\frac{2 425J}{(10000g)(4.1813\frac{J}{g-C})}+20^{o}C

Which yields:

T_{f}=20.06^{o}C

d)

For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

\Delta Q=-2.425kJ

3 0
2 years ago
Two students grab a slinky and start waving it up and down. A third student counts the number of waves that pass by every second
deff fn [24]

Velocity = frequency * wavelength

v = fλ, Just pick any points on the graph for frequency f and corresponding λ. Taking the first red point at the top. λ = 6m, f = 1 Hz, v = 6 * 1, v = 6 m/s  


V = 6 M/S

4 0
2 years ago
Read 2 more answers
Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
Tresset [83]

Answer:

8.67807 N

34.7123 N

Explanation:

m = Mass of shark = 92 kg

\rho_{se} = Density of seawater = 1030 kg/m³

\rho_{f} = Density of freshwater = 1000 kg/m³

\rho_{sh} = Density of shark = 1040 kg/m³

g = Acceleration due to gravity = 9.81 m/s²

Net force on the fin is (seawater)

F_n=mg-V_s\rho_{se}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{se}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1030\times 9.81\\\Rightarrow F_n=8.67807\ N

The lift force required in seawater is 8.67807 N

Net force on the fin is (freshwater)

F_n=mg-V_s\rho_{f}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{f}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1000\times 9.81\\\Rightarrow F_n=34.7123\ N

The lift force required in a river is 34.7123 N

6 0
2 years ago
Consider a vibrating system described by the initial value problem. (A computer algebra system is recommended.) u'' + 1 4 u' + 2
GarryVolchara [31]

Answer:

Therefore the required solution is

U(t)=\frac{2(2-\omega^2)^2}{(2-\omega^2)^2+\frac{1}{16}\omega} cos\omega t +\frac{\frac{1}{2}\omega}{(2-\omega^2)^2+\frac{1}{16}\omega} sin \omega t

Explanation:

Given vibrating system is

u''+\frac{1}{4}u'+2u= 2cos \omega t

Consider U(t) = A cosωt + B sinωt

Differentiating with respect to t

U'(t)= - A ω sinωt +B ω cos ωt

Again differentiating with respect to t

U''(t) =  - A ω² cosωt -B ω² sin ωt

Putting this in given equation

-A\omega^2cos\omega t-B\omega^2sin \omega t+ \frac{1}{4}(-A\omega sin \omega t+B\omega cos \omega t)+2Acos\omega t+2Bsin\omega t = 2cos\omega t

\Rightarrow (-A\omega^2+\frac{1}{4}B\omega +2A)cos \omega t+(-B\omega^2-\frac{1}{4}A\omega+2B)sin \omega t= 2cos \omega t

Equating the coefficient of sinωt and cos ωt

\Rightarrow (-A\omega^2+\frac{1}{4}B\omega +2A)= 2

\Rightarrow (2-\omega^2)A+\frac{1}{4}B\omega -2=0.........(1)

and

\Rightarrow -B\omega^2-\frac{1}{4}A\omega+2B= 0

\Rightarrow -\frac{1}{4}A\omega+(2-\omega^2)B= 0........(2)

Solving equation (1) and (2) by cross multiplication method

\frac{A}{\frac{1}{4}\omega.0 -(-2)(2-\omega^2)}=\frac{B}{-\frac{1}{4}\omega.(-2)-0.(2-\omega^2)}=\frac{1}{(2-\omega^2)^2-(-\frac{1}{4}\omega)(\frac{1}{4}\omega)}

\Rightarrow \frac{A}{2(2-\omega^2)}=\frac{B}{\frac{1}{2}\omega}=\frac{1}{(2-\omega^2)^2+\frac{1}{16}\omega}

\therefore A=\frac{2(2-\omega^2)^2}{(2-\omega^2)^2+\frac{1}{16}\omega}   and        B=\frac{\frac{1}{2}\omega}{(2-\omega^2)^2+\frac{1}{16}\omega}

Therefore the required solution is

U(t)=\frac{2(2-\omega^2)^2}{(2-\omega^2)^2+\frac{1}{16}\omega} cos\omega t +\frac{\frac{1}{2}\omega}{(2-\omega^2)^2+\frac{1}{16}\omega} sin \omega t

5 0
2 years ago
The definition of theory says that a it is a hypothesis or group hypotheses. In your own words, explain why a theory is also a h
BigorU [14]
A hypothesis is a tentative and testable explanation, based on observation(s). A hypothesis can be supported or refuted through experimentation or more observation. A hypothesis can be disproven, but not proven to be true.
8 0
2 years ago
Read 2 more answers
Other questions:
  • In your own words, describe the three steps in ray tracing used to identify where an image forms.
    14·2 answers
  • PLEASE ANSWER ACCURATELY DO NOT GUESS PLEASE AND THANK YOU
    10·1 answer
  • A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward a
    6·1 answer
  • What is the Physics Primer?
    15·2 answers
  • Electrons with energy of 25 eV have a wavelength of ~0.25 nm. If we send these electrons through the same two slits (d = 0.16 mm
    6·1 answer
  • Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
    5·1 answer
  • A liquid in a test tube has a curved surface such that the edges touching the glass are higher than the surface at the center. T
    5·1 answer
  • The image shows the electric field lines around two charged particles. 2 balls separated vertically. Lines with arrowheads run f
    14·2 answers
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • A farmer wants to determine which of two brands of cow feed is best for the cows on a farm. Before using one of the feeds on all
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!