answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
2 years ago
15

Two identical masses are connected to two different flywheels that are initially stationary. Flywheel A is larger and has more m

ass, but has hexagonal sections where material has been removed. The attached masses are released from rest and allowed to fall a height h.Which of the following statements about their angular accelerations is true? a. The angular acceleration of the two flywheels is different but it is impossible to tell which is greater. b. The angular acceleration of flywheel A is greater The angular acceleration of flywheel B is greater. c. Not enough information is provided to determine. d. The angular accelerations of the two flywheels are equal.
Physics
1 answer:
inysia [295]2 years ago
4 0

Answer:

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

c) True. Information is missing to perform the calculation

Explanation:

Let's consider solving this exercise before seeing the final statements.

We use Newton's second law Rotational

      τ = I α

     T r = I α

     T gR = I α

     Alf = T R / I (1)

     T = α I / R

Now let's use Newton's second law in the mass that descends

     W- T = m a

     a = (m g -T) / m

The two accelerations need related

     a = R α

    α = a / R

    a = (m g - α I / R) / m

    R α = g - α I /m R

    α (R + I / mR) = g

    α = g / R (1 + I / mR²)

We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant

Let's review the claims

a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia

b) False. Missing data for calculation

c) True. Information is missing to perform the calculation

d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases

You might be interested in
A string is wrapped around a pulley with a radius of 2.0 cm and no appreciable friction in its axle. The pulley is initially not
stiks02 [169]

Answer:

2

Explanation:

2

5 0
2 years ago
Read 2 more answers
Water evaporates off lakes. Winds blow across the planet. Where does the energy come from for these and other weather processes?
Otrada [13]

Answer:

B. Solar energy

Explanation:

The water cycle is driven primarily by the energy from the sun. This solar energy drives the cycle by evaporating water from the oceans, lakes, rivers, and even the soil. Other water moves from plants to the atmosphere through the process of transpiration.

8 0
2 years ago
Read 2 more answers
B⃗ is kept constant but the coil is rotated so that the magnetic field, B⃗ , is now in the plane of the coil. How will the magne
s344n2d4d5 [400]

Answer:

<u>The flux decreases because the angle between B⃗ and the coil's axis changes.</u>

<u />

Explanation:

The flux through the coil is given by a dot product, between the magnetic field and the vector representing the area of the coil.

\Phi = \vec{B}\cdot \vec{S} = BScos(\theta)

The latter vector has direction perpendicular to the plane in which the area of the coil is, and magnitude equal to the area of the coil. As in the attached image, the vector S is the vector respresenting the area of the coil.

Therefore, the flux will be maximum when the vector S is in the same direction as B, and will be zero when they are perpendicular.

Now, if <em>the coil is rotated so that the magnetic field is in the plane of the coil </em>then, the vectors S and B are perpendicualr, and there will not be net magnetic flux, that is, the flux will decrease.

3 0
2 years ago
Read 2 more answers
A 1.25 in. by 3 in. rectangular steel bar is used as a diagonal tension member in a bridge truss. the diagonal member is 20 ft l
pentagon [3]

Answer:

axial stress in the diagonal bar =36,000 psi

Explanation:

Assuming we have to find axial stress

Given:

width of steel bar: 1.25 in.

height of the steel bar: 3 in

Length of the diagonal member = 20ft

modulus of elasticity E= 30,000,000 psi

strain in the diagonal member ε = 0.001200 in/in

Therefore, axial stress in the diagonal bar σ = E×ε

=  30,000,000 psi×  0.001200 in/in =36,000 psi

5 0
2 years ago
According to the saffir/simpson scale, what storm surge and type of damage was most likely experienced in homestead, florida whi
Naddika [18.5K]

Answer:

Explanation:

The Saffir-Simpson Hurricane Wind Scale gives 1 to 5 rating based on a hurricane's wind speed, storm surge and potential property damage. It rates according to categories. When placed at Hurricanes of Category 3 and above, they are termed major catastrophic hurricanes because of their potential for loss of life and damages of property. Ratings at Category 1 and 2 storms are dangerous but can be prevented by following directed measures.

Florida situated directly in the hurricane at east coast , had experiened Category 1- Category 5 ratings from hurricane and noticed in Land fall in Florida since 1894 with Winds ranging from 74-95 mph with some dangerous damages which can lead damages to Well-built homes, dedtroying roofs , Uprooting shallow rooted trees, and causing power outages due to destruction of poles

to 157 mph or higher causing Catastrophic damages making the area inhabitable due to loss of life and properties.

For example, Hurricane Dorian in September 2019 attacked Florida’s east coast resulting to a Category 2 storm producing tropical storm force winds,heavy rain and storm surge leading to damages of roof of building and disruption of power poles.

8 0
2 years ago
Other questions:
  • A square block of steel with volume 10 cm3 and mass of 75 g is cut precisely in half. The density of the two smaller pieces is n
    6·2 answers
  • You are standing 10 meters from a light source. Then, you back away from the light source until you are 20 meters away from it.
    6·1 answer
  • The position of an object that is oscillating on an ideal spring is given by the equation x=(12.3cm)cos[(1.26s−1)t]. (a) at time
    15·1 answer
  • The Sun is the primary source of energy for ecosystems. The Sun emits . When an organism obtains nutrients by feeding on other o
    7·2 answers
  • What is the gravitational force of attraction between a planet and a 17-kilogram mass that is falling freely toward the surface
    13·1 answer
  • An ideal solenoid 20 cm long is wound with 5000 turns of very thin wire. What strength magnetic field is produced at the center
    10·1 answer
  • Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -2.0 µC; sphere B carries a charge of -6.0 µC;
    6·1 answer
  • n atomic nucleus suddenly bursts apart (fissions) into two pieces. Piece A, of mass mA , travels off to the left with speed vA .
    7·1 answer
  • Physics in motion unit 6a the nature of waves
    9·1 answer
  • Part e a small toy cart equipped with a spring bumper rolls toward a wall with a speed of v. the cart rebounds from the wall, wi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!