answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
1 year ago
6

Two window washers, Bob and Joe, are on a 3.00 m long, 395 N scaffold supported by two cables attached to its ends. Bob weighs 8

05 N and stands 1.00 m from the left end. Two meters from the left end is the 500 N washing equipment. Joe is 0.500 m from the right end and weighs 820 N. Given that the scaffold is in rotational and translational equilibrium, what are the forces on each cable
Physics
1 answer:
WINSTONCH [101]1 year ago
5 0

Answer:

- the forces on the left hand side is 1.038 kN

- the forces on the right hand side is 1.483 kN

Explanation:

Given the data in the question, as illustrated in the image below;

Length of the scaffold = 3 m

weight of the scaffold = 395 N

Weight of Bob = 805 N and stands 1 m from the left end

weight of washing equipment = 500N and on sits 2 m from the left end

Weight of Joe = 820 N and stand 0.500 m from the right end

so the force on the left cable will be;

T_{left = \frac{1}{3m}[ (805 N)( (3-1) m) + ( 395 N )( \frac{3}{2} m) + ( 500 N )(1m ) + ( 820 N)( 0.500m ) ]

T_{left =  \frac{1}{3m}[ 1610 + 592.5 + 500 + 410 ]

T_{left =  \frac{1}{3m}[ 3112.5 ]

T_{left =  1037.5 N

T_{left =  1.038 kN

Therefore, the forces on the left hand side is 1.038 kN

On the right hand side;

T_{Right =  ( 805 N + 395 N + 500 N + 820 N ) - 1037.5 N

T_{Right =  2520 N - 1037.5 N

T_{Right =  1482.5 N

T_{Right =  1.483 kN

Therefore, the forces on the right hand side is 1.483 kN

You might be interested in
A 60.0 kg object is moving east at 8.00 m/s, and then slows down to 4.00 m/s. How much work was done?
Artist 52 [7]
The answer is  -1440. That is letter A.
8 0
2 years ago
Read 2 more answers
A truck collides with a car on horizontal ground. At one moment during the collision, the magnitude of the acceleration of the t
Mice21 [21]

Answer:

The magnitude of the acceleration of the car is 35.53 m/s²

Explanation:

Given;

acceleration of the truck, a_t = 12.7 m/s²

mass of the truck, m_t = 2490 kg

mass of the car, m_c = 890 kg

let the acceleration of the car at the moment they collided = a_c

Apply Newton's third law of motion;

Magnitude of force exerted by the truck = Magnitude of force exerted by the car.

The force exerted by the car occurs in the opposite direction.

F_c = -F_t\\\\m_ca_c = -m_t a_t\\\\a_c =- \frac{m_ta_t}{m_c} \\\\a_c = -\frac{2490 \times 12.7}{890} \\\\a_c = - 35.53 \ m/s^2

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²

3 0
2 years ago
Passengers on a carnival ride move at constant speed in a horizontal circle of radius 5.0 m, making a complete circle in 4.0 s.
Nataliya [291]

Answer:

bonita sisisisiisisisisiisissiissiisiiss

7 0
1 year ago
In lab, your instructor generates a standing wave using a thin string of length L = 1.65 m fixed at both ends. You are told that
mars1129 [50]

Answer:

The maximum transverse speed of the bead is 0.4 m/s

Explanation:

As we know that the Amplitude of the travelling wave is

A = 3.65 mm

Now the speed of the travelling wave is

v_x = 13.5 m/s

now we know that distance of first antinode from one end is 27.5 cm

so length of the loop of the standing wave is given as

\frac{\lambda}{4} = 27.5 cm

\lambda = 110 cm

now we have

N = \frac{2L}{\lambda}

N = \frac{2(1.65)}{1.10}

N = 3

now we have

R = 2A sin(kx)

R = 2(3.65) sin(\frac{2\pi}{1.10}x)

R = 7.3 sin(1.82 \pi x)

now at x = 13.8 cm

R = 7.3 sin(1.82 \pi (0.138))

R = 5.18 mm

now we have

f = \frac{v}{\lambda}

f = \frac{13.5}{1.1}

f = 12.27 Hz

now maximum speed is given as

v_y = R\omega

v_y = (5.18 \times 10^{-3})(2\pi(12.27))

v_y = 0.4 m/s

4 0
2 years ago
Charge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative p
Svetlanka [38]

Answer:

The ratio (U₁/U₂) = 6

Explanation:

U, the potential energy is given as

U = kqQ/r

k = Coulomb's constant

q = charge we're concerned about

Q = charge of the negative plate of the capacitor

r = distance of q from the negative plate of the capacitor.

For charge q₁

U₁ = kq₁Q/s

U₂ = kq₂Q/2s

But q₂ = q₁/3

U₂ becomes U₂ = kq₁Q/6s

U₁ = kq₁Q/s

U₂ = kq₁Q/6s

(U₁/U₂) = 6

5 0
2 years ago
Other questions:
  • A 0.0010-kg pellet is fired at a speed of 50.0m/s at a motionless 0.35-kg piece of balsa wood. When the 
    6·2 answers
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • Marla says that only one person was really responsible for the theory of planetary motion. Do you agree with her? Why or why not
    6·2 answers
  • Which factors could be potential sources of error in the experiment? check all that apply.
    11·2 answers
  • In the swing carousel amusement park ride, riders sit in chairs that are attached by a chain to a large rotating drum as shown i
    7·1 answer
  • A 161 lb block travels down a 30° inclined plane with initial velocity of 10 ft/s. If the coefficient of friction is 0.2, the to
    5·1 answer
  • A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
    13·1 answer
  • A 0.311 kg tennis racket moving 30.3 m/s east makes an elastic collision with a 0.0570 kg ball moving 19.2 m/s west. Find the ve
    5·1 answer
  • A radioactive isotope has a half-life of 2 hours. If a sample of the element contains 600,000 radioactive nuclei at 12 noon, how
    11·1 answer
  • If the 5-N force and the 12-N force form a 90 degree angle, what is the magnitude of the force acting in the direction of the da
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!