answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina86 [1]
1 year ago
8

For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo

te a number.
Physics
1 answer:
pickupchik [31]1 year ago
4 0
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
You might be interested in
A car drives 16 miles south and then 12 miles west. What is the magnitude of the car’s displacement? 4 miles 16 miles 20 miles 2
Ostrovityanka [42]
For this case, what we can do is use the Pythagorean theorem to find the magnitude of the displacement of the car.
 We have then
 d ^ 2 = 16 ^ 2 + 12 ^ 2&#10;
 From here, we clear the value of d.
 We have then:
 d =  \sqrt{16 ^ 2 + 12 ^ 2} &#10;
 Rewriting:
 d = \sqrt{256 + 144}
 d = \sqrt{400}
 d = 20 miles&#10;
 Answer:
 
The magnitude of the car's displacement is:
 
d = 20 miles
7 0
1 year ago
Read 2 more answers
A man carries a load of mass 2.6kg from one end of a uniform pole 100cm long which has a mass 0.4kg. The pole rest on his should
miskamm [114]

Answer:

F = 39.2 N   (hand force) and    N = 68.6 N (shoulder force)

Explanation:

In this exercise we must use the rotational and translational equilibrium conditions, we have several forces: the weight (W) of the pole applied at its geometric center, the load (w1) at one end, the shoulder support (N) 60 cm from the load and hand force (F) at the other end of the pole

Let's set the reference system at the fit point of the shoulder

     ∑ τ = 0

We will assume that the counterclockwise turns are positive

    w₁ 0.60 + W 0.1 + F₁ 0 - F 0.4 = 0

all distances are measured from the support of the man (x₀ = 0.60 m)

    F = (w₁ 0.60 + W 0.1) / 0.4

    F = (m₁ 0.6 + m 0.1) g / 0.4

let's calculate

    F = (2.6 0.6 + 0.4 0.1) 9.8 / 0.4

    F = 39.2 N

this is the force that the hand must exert to keep the system in balance

We apply the translational equilibrium condition

    -w₁ -W + N - F = 0

     N = w₁ + W + F

     N = (m₁ + m) g + F

let's calculate

     N = (2.6 + 0.4) 9.8 + 39.2

     N = 68.6 N

6 0
1 year ago
When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
ch4aika [34]

Answer:

4.41 W

Explanation:

P = IV, V = IR

P = V² / R

Given that P = 0.0625 when V = 1.50:

0.0625 = (1.50)² / R

R = 36

So the resistor is 36Ω.

When the voltage is 12.6, the power consumption is:

P = (12.6)² / 36

P = 4.41

So the power consumption is 4.41 W.

5 0
1 year ago
How many significant figures are in 0.0069
posledela
Two significant figures, the 6 and the 9
7 0
1 year ago
By standard convention, both the electric potential and the the electric potential energy between two charges is taken to be zer
shusha [124]

Answer: at when distance r = infinity.

Explanation: The formulae for the electric potential of an electric charge to an arbitrary point is given by the formulae below

V = q/4πεr

V = electric potential (volts)

q = magnitude of electric charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

In the equation above, it can be seen that only electric potential (v) and distance (r) is a variable, and there is an inverse relationship between them (an increase in one leads to a decrease in the other)

Thus to have zero value of electric potential (v= 0) we have to have the largest value of r ( r = infinity).

Same goes for electric potential energy between two charges, the formulae is given below as

W = q1 *q2/4πεr

W= electric potential energy

q1 = magnitude of first charge.

q2 = magnitude of second charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

Also, all values are constant aside from electric potential energy (w) and distance (r) which have an inverse relationship.

Thus to have zero value of electric potential energy (w =0), we have to get an infinite value of distance ( r =infinity)

6 0
1 year ago
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    14·1 answer
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • A charge of 4 nc is placed uniformly on a square sheet of nonconducting material of side 17 cm in the yz plane. (a) what is the
    14·1 answer
  • A stone is thrown horizontally from 2.4m above the ground at 35m/s. The wall is 14m away and 1m high.At what height the stone wi
    7·1 answer
  • You and your friends are doing physics experiments on a frozen pond that serves as a frictionless horizontal surface. Sam, with
    12·1 answer
  • In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
    14·1 answer
  • A light wave has a 670 nm wavelength in air. Its wavelength in a transparent solid is 420 nm.
    5·1 answer
  • Students repeat the experiment but replace block X and block Y with block W and block Z , as shown in Figure 3. Block W and bloc
    11·1 answer
  • Two thermometers are calibrated, one in degrees Celsius and the other in degrees Fahrenheit.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!