Answer:
"Energy deficiency, no coal-burning, no-cost mining pollution" is the correct answer.
Explanation:
- “The greenest kilowatt-hour seems to be the one this really doesn't should use,” explained Joe Stepenovitch, co-owner as well as COO of something like the electricity IQ Group. Whether a kilowatt becomes generated is far less essential instead of not needing to do something with it.
- It, therefore, reduces operational costs, appeals to progressives and green-conscious consumers, prepares the business for impending emissions reductions policy caps, as well as coincides with you including an imminent future focused on renewable energy sources.
Answer:
a) The maximum contact pressure is 274.58 MPa and the width of contact is 0.058 mm
b) The maximum shear stress is 82.37 MPa at a distance of 0.023 mm
Explanation:
Given data:
L = 20 mm
F = 250 N
r₁ = 10 mm
r₂ = 15 mm
v = 0.3
E = 2.07x10⁵ MPa

a) The maximum contact pressure is:

The width of contact is:

b) According the graph elastic stresses below the surface, for v = 0.3, the maximum shear stress is
T = 0.3*P = 0.3 * 274.58 = 82.37 MPa
At a distance of
0.8*b = 0.8*0.029 = 0.023 mm
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Answer:
a) 
b) 2.36 cm
Explanation:
a) The horizontal distance = x = 6 cm
1 cm = 0.01 m
6 cm = 6 cm * 0.01 m/cm = 0.6 m
Therefore the time taken (t) by the electron to travel from the emission point to the screen can be gotten from:
x = t * 


b) The vertical distance (y) traveled by the electon before it hits the screen is given by:
