<u>Answer:</u>
<em>Newtons II law: </em>
<em> </em>It is defined as<em> "the net force acting on the object is a product of mass and acceleration of the body"</em> . Also it defines that the <em>"acceleration of an object is dependent on net force and mass of the body".</em>
Let us assume that,a string is attached to the cart, which passes over a pulley along the track. At another end of the string a weight is attached which hangs over the pulley. The hanging weight provides tension in the spring, and it helps in accelerating the cart. We assume that the string is massless and no friction between pulley and the string.
Whenever the hanging weight moves downwards, the cart will accelerate to right side.
<em>For the hanging weight/mass</em>
When hanging weight of mass is m₁ and accelerate due to gravitational force g.
Therefore we can write F = m₁ .g
and the tension acts in upward direction T (negetive)
Now, Fnet = m₁ .g - T
= m₁.a
So From Newtons II law<em> F = m.a</em>
To be able to identify that the object is in the same motion, we should find the graphs that has an increasing slope of displacement and with the constant velocity with varying time. Graphs on letter D satisfies these requirements.
<em>ANSWER: D</em>
Answer:
The work done is 360 J.
Explanation:
Given that,
Mass = 50 kg
Distance =3 m
We need to calculate the work done
The work done is equal to the product of force and displacement.
Using formula of work done


Where, F = force
D = distance
θ = Angle between force and displacement
Put the value into the formula


Hence, The work done is 360 J.
Answer:
(a) Height is 4.47 m
(b) Height is 4.37 m
Solution:
As per the question:
Initial velocity of teh ball, 
Angle made by the ramp, 
Distance traveled by the ball on the ramp, d = 5.00 m
Now,
(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

where
H =
g = 

= 19.06 m/s
Now, maximum height attained is given by:


Height from the ground = 
(b) now, considering the coefficient of friction bhetween ramp and the ball,
:
velocity can be given by the eqn-3 of motion:


= 18.7 m/s
Now, maximum height attained is given by:


Height from the ground = 
Answer: 140 m
Explanation:
Let's begin by stating clear that motiont is the change of position of a body at a certain time. So, during this motion, the balloon will have a trajectory and a displacement, being both different:
The<u> trajectory</u> is <u>the path followed by the body, the distance it travelled</u> (is a scalar quantity).
The displacement is <u>the distance in a straight line between the initial and final position</u> (is a vector quantity).
So, according to this, the distance the balloon traveled during the first 45 s (its trajectory) is 140 m.
But, if we talk about displacement, we have to draw a straight line between the initial position of the balloon (point 0) to its final position (point 90 m). Being its displacement 95 m.