Answer:
The winding density of the solenoid, n = 104 turns/m
Explanation:
Given that,
Length of the solenoid, l = 0.7 m
Radius of the circular cross section, r = 5 cm = 0.05 m
Energy stored in the solenoid, 
Current, I = 0.4 A
To find,
The winding density of the solenoid.
Solution,
The expression for the energy stored in the solenoid is given by :

Where
L is the self inductance of the solenoid

n is the winding density of the solenoid


n = 104 turns/m
So, the winding density of the solenoid is 104 turns/m
Answer:
velocity = 472 m/s
velocity = 52.4 m/s
Explanation:
given data
steady rate = 0.750 m³/s
diameter = 4.50 cm
solution
we use here flow rate formula that is
flow rate = Area × velocity .............1
0.750 =
× (4.50×
)² × velocity
solve it we get
velocity = 472 m/s
and
when it 3 time diameter
put valuer in equation 1
0.750 =
× 3 × (4.50×
)² × velocity
velocity = 52.4 m/s
Answer:
Speed, mass and acceleration
Explanation:
A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.
According to the question, the row that has two scalars and one vector is speed, mass and acceleration.
The two scalars in this row are speed and mass while the vector quantity there is the acceleration.
Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.
Speed also only specify the
total distance covered with respect to time but not the direction of the direction.
To develop this problem we will proceed to convert all units previously given to the international system for which we have to:



PART A ) From the given values the minimum acceleration will be given for 120Lb and maximum acceleration when 170Lb is reached therefore:


Through the Newtonian relationship of the Force we have to:




PART B) For the maximum magnitude of the acceleration downward we have that:


Through the Newtonian relationship of the Force we have to:





Answer:
the answer the correct is 3
Explanation:
Let's use the relationship between momentum and momentum
I = Δp
I = m
- m v₀
Let's calculate
I = 0.4 5.0 - 0
I = 2.0 N s
By Newton's law of action and reaction the force on the ball is equal to the force that the ball exerts on the foot, therefore the impulse on the foot of equal magnitude, but in the opposite direction
I = 2.0 Ns with 60°
When reviewing the answer the correct is 3