The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table.
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere.
I = 7/5*mR^2 M = 7/5*m
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer:
The answer is "effective stress at point B is 7382 ksi
"
Explanation:
Calculating the value of Compressive Axial Stress:
![\to \sigma y =\frac{F}{A} = \frac{4 F}{( p d ^2 )} = \frac{(4 x ( - 40000 \ lbf))}{[ p \times (1 \ in)^2 ]} = - 50.9 \ ksi \\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%20y%20%20%3D%5Cfrac%7BF%7D%7BA%7D%20%3D%20%5Cfrac%7B4%20F%7D%7B%28%20p%20d%20%5E2%20%29%7D%20%3D%20%5Cfrac%7B%284%20x%20%28%20-%2040000%20%5C%20lbf%29%29%7D%7B%5B%20p%20%5Ctimes%20%281%20%5C%20in%29%5E2%20%5D%7D%20%3D%20-%2050.9%20%5C%20ksi%20%5C%5C)
Calculating Shear Transverse:



![\to \sigma' =[ s y^2 +3( t \times y^2 + t yz^2 )] \times \frac{1}{2}\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%27%20%3D%5B%20s%20y%5E2%20%2B3%28%20t%20%5Ctimes%20y%5E2%20%2B%20t%20yz%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C)
![= [ (-50.9)^2 +3((63.7)^2 +(0.17)^2 )] \times \frac{1}{2}\\\\=[2590.81+ 3(4057.69)+0.0289]\times \frac{1}{2}\\\\=[2590.81+12,173.07+0.0289] \times \frac{1}{2}\\\\=14763.9089\times \frac{1}{2}\\\\ = 7381.95445 \ ksi\\\\ = 7382 \ ksi](https://tex.z-dn.net/?f=%3D%20%5B%20%28-50.9%29%5E2%20%2B3%28%2863.7%29%5E2%20%2B%280.17%29%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B%203%284057.69%29%2B0.0289%5D%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B12%2C173.07%2B0.0289%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D14763.9089%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%20%3D%207381.95445%20%5C%20ksi%5C%5C%5C%5C%20%3D%207382%20%5C%20ksi)
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip

Answer:
degrees
Explanation:
Eels have been recorded to spin at up to 14 revolutions per second when feeding in this way
So the angle the eel rotate is going to be
Camera record 120 frames per second
time taken for 1 frame record

eel rotates
degrees in 1 second
so:
eel rotetas
degrees
Answer:
2.286 ohm
Explanation:
R1 = 16 ohm
R2 = 8 ohm
R3 = 4 ohm
They all are connected in parallel combination
Let the equivalent resistance is R.
1/R = 1/R1 + 1/R2 + 1/R3
1/R = 1/16 + 1/8 + 1/4
1/R = (1 + 2 + 4) / 16
1/R = 7 / 16
R = 16/7 = 2.286 ohm