If you don't wear a helmet and let's say you fell off your bike, you can severely injure your head! But if you DO wear a helmet and you fell off your bike, there's about I predict a 98% chance that you won't injure but sometimes it's 100%
hope this helps!<span />
Note:
The height of a high bar from the floor is h = 2.8 m (or 9.1 ft).
It is not provided in the question, so the standard height is assumed.
g = 9.8 m/s², acceleration due to gravity.
Note that the velocity and distance are measured as positive upward.
Therefore the floor is at a height of h = -2.8 m.
First dismount:
u = 4.0 m/s, initial upward velocity.
Let v = the velocity when the gymnast hits the floor.
Then
v² = u² - 2gh
v² = 16 - 2*9.8*(-2.8) = 70.88
v = 8.42 m/s
Second dismount:
u = -3.0 m/s
v² = (-3.0)² - 2*9.8*(-2.8) = 63.88 m/s
v = 7.99 m/s
The difference in landing velocities is 8.42 - 7.99 = 0.43 m/s.
Answer:
First dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 8.42 m/s downward
Second dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 7.99 m/s downward
The landing velocities differ by 0.43 m/s.
Answer:
There will be no change in the direction of the electric field .
Explanation:
The direction will remain the same because the sign of the charges has no effect on it.
When one replaces the conducting cube with one that has positive charge carriers there will be no change in the direction of the field as there is no defined relationship between the direction of the electric field and sign of the charge.
Answer:
R = 0.0503 m
Explanation:
This is a projectile launching exercise, to find the range we can use the equation
R = v₀² sin 2θ / g
How we know the maximum height
² =
² - 2 g y
= 0
= √ 2 g y
= √ 2 9.8 / 15
= 1.14 m / s
Let's use trigonometry to find the speed
sin θ =
/ vo
vo =
/ sin θ
vo = 1.14 / sin 60
vo = 1.32 m / s
We calculate the range with the first equation
R = 1.32² sin(2 60) / 30
R = 0.0503 m
Answer:
9.99
Explanation:
The value of (997)^1/3
(997)^1/3
997 = (1000 - 3)
(1000 - 3)^1/3
Expanding :
[1000(1 - 3/1000)]^1/3
1000^1/3 * (1 - 3/1000)^1/3
Cube root of 1000
10 * (1 - 3/1000 * 1/3)
10 * (1 - 1/1000)
10 * (1 - 0.001)
10(0.999)
= 9.99
Hence, the value of (997)^1/3 according to binomial theorem is 9.99