Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
Keeping in mind that the conversion between calories and Joules is

we can write the conversion factor using the kilocalories:

The energy released in our problem is
so we can set a simple proportion to find its equivalent in kcal:

from which we find:
Answer:
option A
Explanation:
given,
depth of the sea level = 10 m
g = 10 m/s²
Pressure underwater = ?
we know,
P = ρ g h
where ρ is the density of water which is equal to 1000 kg/m³
h is the depth of sea level
P = ρ g h
P = 1000 x 10 x 10
P = 100000 Pa
P = 100 kPa
Hence, the correct answer is option A
Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
Answer:

Explanation:
<u>Horizontal Launch</u>
When an object is launched horizontally at a speed vo, it describes a curved called parabola as the speed in the x-direction does not change and the speed in the y-direction increases with time because the gravity makes it return to the ground.
The vertical distance the object (potato) travels downwards is:

The horizontal distance is

We need to find the time when both distances are equal, thus

Simplifying by t

Solving for t
