answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
1 year ago
13

A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri

ction. The object is pulled to a distance of 0.200 m from its equilibrium position, held in place with a force of 16.0 N, and then released from rest. It then oscillates in simple harmonic motion. (The object oscillates along the x-axis, where x = 0 is the equilibrium position.) (a) What is the spring constant (in N/m)? N/m (b) What is the frequency of the oscillations (in Hz)? Hz (c) What is the maximum speed of the object (in m/s)? m/s (d) At what position(s) (in m) on the x-axis does the maximum speed occur? x = ± m (e) What is the maximum acceleration of the object? (Enter the magnitude in m/s2.) m/s2 (f) At what position(s) (in m) on the x-axis does the maximum acceleration occur? x = ± m (g) What is the total mechanical energy of the oscillating spring–object system (in J)? J (h) What is the speed of the object (in m/s) when its position is equal to one-third of the maximum displacement from equilibrium? m/s (i) What is the magnitude of the acceleration of the object (in m/s2) when its position is equal to one-third of the maximum displacement from equilibrium? m/s2
Physics
1 answer:
enot [183]1 year ago
8 0

(a) 80 N/m

The spring constant can be found by using Hooke's law:

F=kx

where

F is the force on the spring

k is the spring constant

x is the displacement of the spring relative to the equilibrium position

At the beginning, we have

F = 16.0 N is the force applied

x = 0.200 m is the displacement from the equilibrium position

Solving the formula for k, we find

k=\frac{F}{m}=\frac{16.0 N}{0.200 m}=80 N/m

(b) 0.84 Hz

The frequency of oscillation of the system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 80 N/m is the spring constant

m = 2.90 kg is the mass attached to the spring

Substituting the numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{80 N/m}{2.90 kg}}=0.84 Hz

(c) 1.05 m/s

The maximum speed of a spring-mass system is given by

v=\omega A

where

\omega is the angular frequency

A is the amplitude of the motion

For this system, we have

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m (the amplitude corresponds to the maximum displacement, so it is equal to the initial displacement)

Substituting into the formula, we find the maximum speed:

v=(5.25 rad/s)(0.200 m)=1.05 m/s

(d) x = 0

The maximum speed in a simple harmonic motion occurs at the equilibrium position. In fact, the total mechanical energy of the system is equal to the sum of the elastic potential energy (U) and the kinetic energy (K):

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2

where

k is the spring constant

x is the displacement

m is the mass

v is the speed

The mechanical energy E is constant: this means that when U increases, K decreases, and viceversa. Therefore, the maximum kinetic energy (and so the maximum speed) will occur when the elastic potential energy is minimum (zero), and this occurs when x=0.

(e) 5.51 m/s^2

In a simple harmonic motion, the maximum acceleration is given by

a=\omega^2 A

Using the numbers we calculated in part c):

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m

we find immediately the maximum acceleration:

a=(5.25 rad/s)^2(0.200 m)=5.51 m/s^2

(f) At the position of maximum displacement: x=\pm 0.200 m

According to Newton's second law, the acceleration is directly proportional to the force on the mass:

a=\frac{F}{m}

this means that the acceleration will be maximum when the force is maximum.

However, the force is given by Hooke's law:

F=kx

so, the force is maximum when the displacement x is maximum: so, the maximum acceleration occurs at the position of maximum displacement.

(g) 1.60 J

The total mechanical energy of the system can be found by calculating the kinetic energy of the system at the equilibrium position, where x=0 and so the elastic potential energy U is zero. So we have

E=K=\frac{1}{2}mv_{max}^2

where

m = 2.90 kg is the mass

v_{max}=1.05 m/s is the maximum speed

Solving for E, we find

E=\frac{1}{2}(2.90 kg)(1.05 m/s)^2=1.60 J

(h) 0.99 m/s

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

so the elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(80 N/m)(0.0667 m)^2=0.18 J

and since the total energy E = 1.60 J is conserved, the kinetic energy is

K=E-U=1.60 J-0.18 J=1.42 J

And from the relationship between kinetic energy and speed, we can find the speed of the system:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.42 J)}{2.90 kg}}=0.99 m/s

(i) 1.84 m/s^2

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

So the restoring force exerted by the spring on the mass is

F=kx=(80 N/m)(0.0667 m)=5.34 N

And so, we can calculate the acceleration by using Newton's second law:

a=\frac{F}{m}=\frac{5.34 N}{2.90 kg}=1.84 m/s^2

You might be interested in
Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing
melomori [17]

Answer: Anthony will be warmer after the game.

Explanation :

Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing a white shirt. Anthony will be warmer after the game. The black color is a good absorber of radiation and a bad reflector.

The black color absorbs heat until a thermal equilibrium is attained. So, it is advisable to wear cotton clothes in summers not dark colored clothes.

7 0
2 years ago
Read 2 more answers
The descriptions below explain two ways that water is used by plants on a sunny day. I. In a process called transpiration, some
grigory [225]
In photosynthesis, the water is being used to create food for the plant (Glucose). In transpiration the water is going from a liquid to a gas that's being released.
4 1
2 years ago
Read 2 more answers
How many significant figures do each of the following numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03, (e) 0.0086, (f) 3236
Korolek [52]

In determining the number of significant figures in a given number, there are three rules to always remember / follow:

First: All integers except zero are always significant.

<span>Second: Any zeros located between  non zeroes are always significant.</span>

Third: A zero located after a non zero in a decimal is always significant whether it is before or after the decimal

 

Therefore using this rule, the number of significant digits in the given numbers are:

(a) 214 = 3

(b) 81.60 = 4

(c) 7.03 = 3

(d) 0.03 = 1

(e) 0.0086 = 2

(f) 3236 = 4

(g) 8700 = 2

4 0
2 years ago
Two parallel co-axial disks are floating in deep space (far from sun and planets). Each disk is 1 meter in diameter and the disk
HACTEHA [7]

Answer:

T₂ = 5646 K

Explanation:

Let's start by finding the power received by the first disc, for this we use Stefan's law

          P = σ. A e T⁴

Where next is the Stefam-Bolztmann constant with value 5,670 10-8 W / m² K⁴, A is the area of ​​the disk, T the absolute temperature and e the emissivity that for a black body is  1

The intensity is defined as the amount of radiation that arrives per unit area. For this we assume that the radiation expands uniformly in all directions, the intensity is

           I = P / A

Writing this expression for both discs

          I₁ A₁ = I₂ A₂

          I₂ = I₁ A₁ / A₂

The area of ​​a sphere is

          A = 4π r²

           I₂ = I₁ (r₁ / r₂)²

          r₂ = r₁ ± 5

          I₁ = I₂ ( (r₁ ± 5)/r₁)²

.

        Let's write the Stefan equation

         P / A = σ e T⁴

          I = σ e T⁴

This is the intensity that affects the disk, substitute in the intensity equation

         σ e₁ T₁⁴ = σ e₂ T₂⁴ (r₂ / r₁)²

The first disc indicates that it is a black body whereby e₁ = 1, the second disc, as it is painted white, the emissivity is less than 1, the emissivity values ​​of the white paint change between 0.90 and 0.95, for this calculation let's use 0.90 matt white

        e₁ T₁⁴ = T₂⁴   (r1 + 5)²/r₁²

       T₁ = T₂  {(e₂/e₁)}^{1/4}  √(1 ± 1/ r₁)  

If we assume that r₁ is large, which is possible since the disks are in deep space, we can expand the last term

           (1 ±x) n = 1 ± n x

Where x = 5 / r₁ << 1

We replace

          T₁ = T₂ {(e₂/e₁)}^{1/4}  (1 ± ½   5/r1)

           T₁ = T₂ {(e₂)}^{1/4}   (1 ± 5/2 1/r1)

If the discs are far from the star, they indicate that they are in deep space, the distance r₁ from being grade by which we can approximate; this is a very strong approach

              T₁ = T₂  {(e₂)}^{1/4} ¼

              T<u>₁</u> = T₂  0.90.9^{1/4}

               5500 = T₂  0.974

               T₂ = 5646 K

3 0
1 year ago
The amount of steering wheel movement needed to turn will ____________ the faster you go.
Naddika [18.5K]

Answer:

The answer to your question is Decrease

4 0
1 year ago
Read 2 more answers
Other questions:
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • Ddt is _____-soluble so it accumulates in _____.
    11·1 answer
  • a bus is moving at 22m/s [E] for 12s. Then the bus driver slows down at 1.2m/s2 [W] until the bus stops. Determine the total dis
    14·1 answer
  • What is the average acceleration of a car that is initially at rest at a stoplight and then accelerates to 24 m/s in 9.4 s?
    15·2 answers
  • Person X pushes twice as hard against a stationary brick wall as person Y. Which one of the following statements is correct?
    14·1 answer
  • What minimum heat is needed to bring 250 g of water at 20 ∘C to the boiling point and completely boil it away? The specific heat
    12·1 answer
  • Tapping the surface of a pan of water generates 17.5 waves per second. If the wavelength of each wave is 45 cm, what is the spee
    6·1 answer
  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
    13·1 answer
  • The National High Magnetic Field Laboratory once held the world record for creating the strongest magnetic field. Their largest
    5·1 answer
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!