answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
2 years ago
5

Explain the theory Steven Reiss developed and tested.

Physics
2 answers:
irinina [24]2 years ago
7 0

Steven Reiss proposed the theory of 16 basic desires (under theory of motivation) which he thought of when he was admitted in hospital and visualized the nurses enjoying their work.  

He deduced 16 desires which are as follows –  

1. Being curious

2. Being hungry

3. Being accepted

4. Taking care of offsprings

5. Being faithful

6. Requiring social justice

7. Being independent

8. Need for establishes environment

9. Need of work out

10. Will of power

11. Romance

12. Desire to save

13. Desire to establish social contact

14. Desire to feel safe and secure

15. Desire to establish oneself in society

16. Desire to revenge

NNADVOKAT [17]2 years ago
6 0
<span>A theory of motivation by Steven Reiss, the 16 Basic Desires Theory talks about the sixteen fundamental needs, values and drives that motivate a person.</span>
You might be interested in
A bicyclist of mass 68 kg rides in a circle at a speed of 3.9 m/s. If the radius of the circle is 6.5 m, what is the centripetal
ASHA 777 [7]
Data:
Centripetal Force = ? (Newton)
m (mass) = 68 Kg
s (speed) = 3.9 m/s
R (radius) = 6.5 m

Formula:
F_{centripetal\:force} =  \frac{m*s^2}{R}

Solving:
F_{centripetal\:force} = \frac{m*s^2}{R}
F_{centripetal\:force} = \frac{68*3.9^2}{6.5}
F_{centripetal\:force} = \frac{68*15.21}{6.5}
F_{centripetal\:force} = \frac{1034.28}{6.5}
\boxed{\boxed{F_{centripetal\:force} = 159.12\:N}}
Answer:
<span>B.159 N</span>
3 0
2 years ago
In Physics lab, Ellen has been given the task of constructing a simple motor. She must find common household items at home and b
Aleks [24]

Answer:

a) battery-->electrical current-->copper wire rotor -->magnet--> mechanical energy

Explanation:

6 0
2 years ago
Read 2 more answers
: Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at
ser-zykov [4K]

Complete Question

Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at sea level. One container is in Denver at an altitude of about 6,000 ft and the other is in New Orleans (at sea level). The surface area of the container lid is A=0.0155 m. The air pressure in Denver is PD = 79000 Pa. and in New Orleans is PNo = 100250 Pa. Assume the lid is weightless.

Part (a) Write an expression for the force FNo required to remove the container lid in New Orleans.

Part (b) Calculate the force FNo required to lift off the container lid in New Orleans, in newtons.

Part (c) Calculate the force Fp required to lift off the container lid in Denver, in newtons.

Part (d) is more force required to lift the lid in Denver (higher altitude, lower pressure) or New Orleans (lower altitude, higher pressure)?

Answer:

a

The  expression is   F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

b

F_{No}= 7771.125 \ N

c

 F_p = 2.2*10^{6} N

d

From the value obtained we can say the that the force required to open the lid is higher at Denver

Explanation:

          The altitude of container in Denver is  d_D = 6000 \ ft = 6000 * 0.3048 = 1828.8m

           The surface area of the container lid is A = 0.0155m^2

           The altitude of container in New Orleans  is sea-level

           The air pressure in Denver is  P_D = 79000 \ Pa

            The air pressure in new Orleans is P_{ro} = 100250 \ Pa

Generally force is mathematically represented as

            F_{No} = \Delta P A

  So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

   The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa

So the \Delta P which is the difference in pressure within and outside the container is  

           \Delta P = P_{No} - \frac{P_{sea}}{2}

Therefore

                F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

Now substituting values

                F_{No} =   0.0155 [100250 - \frac{101000}{2}]

                       F_{No}= 7771.125 \ N

The force to remove the lid in Denver is  

           F_p = \Delta P_d A

So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

 The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa    

 At  sea level the air pressure in Denver is mathematically represented as

              P_D = \rho g h

     =>     g = \frac{P_D}{\rho h}      

Let height at sea level is h = 1

  The air pressure at height d_D

             P_d__{D}} = \rho gd_D

    =>     g = \frac{P_d_D}{\rho d_D}

  Equating the both

                 \frac{P_D}{\rho h}  = \frac{P_d_D}{\rho d_D}

                 P_d_D =  P_D * d_D

Substituting value  

                   P_d__{D}} = 1828.2 * 79000

                    P_d__{D}} = 1.445*10^{8} Pa

    So

              \Delta P_d  = P_{d} _D - \frac{P_{sea}}{2}

=>          \Delta P_d  = 1.445 *10^{8} - \frac{101000}{2}    

                        \Delta P_d = 1.44*10^{8}Pa

  So

               F_p = \Delta P_d A

                  = 1.44*10^8 * 0.0155

              F_p = 2.2*10^{6} N

               

                 

             

             

6 0
3 years ago
You are participating in a NASA traineeship, working with a group planning a new landing on Mars. Your supervisor has come up wi
aivan3 [116]

Answer:

h=17005.8 km

Explanation:

Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass M=6.39\times10^{23} kg at a distance r will be:

F=\frac{GMm}{r^2}

where G=6.67\times10^{-11}Nm^2/kg^2 is the gravitational constant.

This force is the centripetal force the satellite experiments, so we can write:

F=ma_{cp}=mr\omega^2=mr(\frac{2\pi}{T})^2=\frac{4\pi^2mr}{T^2}

Putting all together:

\frac{GMm}{r^2}=\frac{4\pi^2mr}{T^2}

which means:

r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}

Which for our values is:

r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km

Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km , which leaves us with:

h=r-R=20395.3km-3389.5 km=17005.8 km

6 0
2 years ago
13. Calculate the total heat energy in Joules needed to convert 20 g of substance X from -10°C to 70°C?
sergeinik [125]

The heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.

Explanation:

The heat energy required to convert a substance or to heat up or increase the temperature of a substance can be obtained from the specific heat formula.

As per this formula, the heat energy applied should be equal to the product of  mass of the substance with temperature gradient and also with specific heat of the substance. Basically, the heat provided to increase or convert a substance should be more than the specific heat of the substance.

Q = mc del T

Since, here the mass of the substance X is given as m = 20g and the temperature change is given from -10°C to 70°C.

Then ΔT = (70-(-10))=70+10=80°C.

As the substance is unknown, the specific heat of that substance can also not be determined. Hence keep it as C.

Q = 20*C*80

Q = 1600C J

Thus, the heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.

5 0
2 years ago
Other questions:
  • Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
    9·2 answers
  • The most widely accepted model for the origin of the moon involves _____. the formation of the moon from dust and gas when earth
    13·2 answers
  • An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
    12·1 answer
  • A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
    10·1 answer
  • A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
    13·1 answer
  • A composite wall separates combustion gases at 2400°C from a liquid coolant at 100°C, with gas and liquid-side convection coeffi
    9·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • A cubical shell with edges of length a is positioned so that two adjacent sides of one face are coincident with the +x and +y ax
    8·1 answer
  • How much energy must be transferred out of the system as heat q to lower its temperature to 0∘c? express your answer numerically
    15·1 answer
  • A rabbit is moving in the positive x-direction at 1.10 m/s when it spots a predator and accelerates to a velocity of 10.9 m/s al
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!