answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
2 years ago
7

Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consid

er points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?
Physics
1 answer:
Korolek [52]2 years ago
7 0

Answer:

a

    z= 2.5 \ m

b

   z =  (1 \ m ,  4 \ m )

Explanation:

From the question we are told that

     Their distance apart is  d =  5.00 \ m

      The  wavelength of each source wave \lambda =  6.0 \ m

Let the distance from source A  where the construct interference occurred be z

Generally the path difference for constructive interference is

              z - (d-z) =  m \lambda

Now given that we are considering just the straight line (i.e  points along the line connecting the two sources ) then the order of the maxima m =  0

  so

        z - (5-z) =  0

=>     2 z - 5 =  0

=>     z= 2.5 \ m

Generally the path difference for destructive  interference is

           |z-(d-z)| = (2m + 1)\frac{\lambda}{2}

=>         |2z - d |= (0 + 1)\frac{\lambda}{2}

=>        |2z - d| =\frac{\lambda}{2}

substituting values

          |2z - 5| =\frac{6}{2}

=>      z  =  \frac{5 \pm 3}{2}

So  

      z =  \frac{5 + 3}{2}

      z =  4\ m

and

      z =  \frac{ 5 -3 }{2}

=>   z =  1 \ m

=>    z =  (1 \ m ,  4 \ m )

You might be interested in
If no friction acts on a diver during a dive, then which of the following statements is true? A) The total mechanical energy of
EleoNora [17]
If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.

Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).

The initial PE = mgh₁ and the initial KE  = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
 
Therefore
(KE + PE) ₁ = (KE + PE)₂

Evaluate the given answers.
A) The total mechanical energy of the system increases.
     FALSE

B) Potential energy can be converted into kinetic energy but not vice versa.
     TRUE

C) (KE + PE)beginning = (KE + PE) end.
     TRUE

D) All of the above.
     FALSE

4 0
2 years ago
Read 2 more answers
when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
marysya [2.9K]

Answer:

From the initial height h

Explanation:

When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already

6 0
1 year ago
The force diagram represents a girl pulling a sled with a mass of 6.0 kg to the left with a force of 10.0 N at a 30.0 degree ang
STatiana [176]

the correct answers are 54N and -1,2m/s^2

6 0
1 year ago
Read 2 more answers
A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
taurus [48]
-3 m/s
---------
per min

oh I think 8m/s to 3m/s to 0m/s

idk probably -0.08 

7 0
2 years ago
Read 2 more answers
Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows
Scorpion4ik [409]

Answer:

Friction acts in the opposite direction to the motion of the truck and box.

Explanation:

Let's first review the problem.

A moving truck applies the brakes, and a box on it does not slip.

Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.

The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.

5 0
1 year ago
Other questions:
  • How are adhesion and cohesion similar? how are they different?
    12·1 answer
  • Randy wants to know whether a soil's porosity affects how easily seedlings grow in it.
    10·2 answers
  • Suppose the circumference of a bicycle wheel is 2 meters. If it rotates at 1 revolution per second when you are riding the bicyc
    9·1 answer
  • A wave with an amplitude of 9.3 mm is traveling along a string whose linear mass density is 230 g/m and whose tension is 65 N. I
    7·1 answer
  • A parallel-plate capacitor with a 4.9 mm plate separation is charged to 57 V . Part A With what kinetic energy, in eV, must a pr
    13·1 answer
  • Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3>s. (a) How fast will it shoot out of a hole 4
    10·1 answer
  • For the RC circuit and the RL circuit, assume that the period of the source square wave is much larger than the time constant fo
    8·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • Calculate the mass (in kg) of 54.3 m³ of granite. The density of granite is 2700 kg/m³. Give your answer to 2 decimal places.
    13·1 answer
  • A green ball has a mass of 0.525 kg and a blue ball has a mass of 0.482 kg. A croquet player strikes the green ball and it gains
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!