answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
2 years ago
7

Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consid

er points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?
Physics
1 answer:
Korolek [52]2 years ago
7 0

Answer:

a

    z= 2.5 \ m

b

   z =  (1 \ m ,  4 \ m )

Explanation:

From the question we are told that

     Their distance apart is  d =  5.00 \ m

      The  wavelength of each source wave \lambda =  6.0 \ m

Let the distance from source A  where the construct interference occurred be z

Generally the path difference for constructive interference is

              z - (d-z) =  m \lambda

Now given that we are considering just the straight line (i.e  points along the line connecting the two sources ) then the order of the maxima m =  0

  so

        z - (5-z) =  0

=>     2 z - 5 =  0

=>     z= 2.5 \ m

Generally the path difference for destructive  interference is

           |z-(d-z)| = (2m + 1)\frac{\lambda}{2}

=>         |2z - d |= (0 + 1)\frac{\lambda}{2}

=>        |2z - d| =\frac{\lambda}{2}

substituting values

          |2z - 5| =\frac{6}{2}

=>      z  =  \frac{5 \pm 3}{2}

So  

      z =  \frac{5 + 3}{2}

      z =  4\ m

and

      z =  \frac{ 5 -3 }{2}

=>   z =  1 \ m

=>    z =  (1 \ m ,  4 \ m )

You might be interested in
The air around a pool and the water in the pool receive equal amounts of energy from the sun. Why does the air experience a grea
labwork [276]

Answer:

A

Explanation:

4 0
1 year ago
Choose the correct statement of Kirchhoff's voltage law.
frutty [35]

Answer:

A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.

Explanation:

Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.

It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.

In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.

3 0
2 years ago
While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
____ [38]

As per the question Bob drops the bag full with feathers from the top of the building.

The mass of the bag(m)= 1.0 lb

Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.

Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2


Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s

Hence time t= 1.5 s

From equation of kinematics we know that -

                S=ut + 0.5at^2     [ here S is the distance travelled]

For motion under free fall initial velocity (u)=0.

Hence   S= 0×1.5+{0.5×(-9.8)×(1.5)^2}

           ⇒ -S =0-11.025 m

            ⇒ S= 11.025 m

                   =11 m

Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .


Hence the correct option is B.

               

3 0
2 years ago
Read 2 more answers
somewhere between the earth and the moon is a point where the gravitational attraction of the earth is canceled by the gravitati
mote1985 [20]
<span>It's pretty easy problem once you set it up.

Earth------------P--------------Moon

"P" is where the gravitational forces from both bodies are acting equally on a mass m

Let's define a few distances.
Rep = distance from center of earth to P
Rpm = distance from P to center of moon
Rem = distance from center of earth to center of moon

You are correct to use that equation. If the gravitational forces are equal then

GMearth*m/Rep² = Gm*Mmoon/Rpm²

Mearth/Mmoon = Rep² / Rpm²

Since Rep is what you're looking for we can't touch that. We can however rewrite Rpm to be

Rpm = Rem - Rep

Mearth / Mmoon = Rep² / (Rem - Rep)²

Since Mmoon = 1/81 * Mearth
81 = Rep² / (Rem - Rep)²

Everything is done now. The most complicated part now is the algebra, so bear with me as we solve for Rep. I may skip some obvious or too-long-to-type steps.

81*(Rem - Rep)² = Rep²
81*Rep² - 162*Rem*Rep + 81*Rem² = Rep²
80*Rep² - 162*Rem*Rep + 81*Rem² = 0

We use the quadratic formula to solve for Rep:
Rep = (81/80)*Rem ± (9/80)*Rem
Rep = (9/8)*Rem and (9/10)*Rem

Obviously, point P cannot be 9/8 of the way to the moon because it'll be beyond the moon. Therefore, the logical answer would be 9/10 the way to the moon or B.

Edit: The great thing about this idealized 2-body problem, James, is that it is disguised as a problem where you need to know a lot of values but in reality, a lot of them cancel out once you do the math. Funny thing is, I never saw this problem in physics during Freshman year. I saw it orbital mechanics in my junior year in Aerospace Engineering. </span> sylent_reality · 8 years ago
8 0
2 years ago
a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
Katena32 [7]

Answer:

a) factor b=\sqrt{2}

b) factor b=\frac{1}{2}

c) factor b=1

d) factor b=1

Explanation:

Time period of oscillating spring-mass system is given as:

T=\frac{1}{f}

T={2\pi} \sqrt{\frac{m}{k} }

where:

f= frequency of oscillation

m= mass of the object attached to the spring

k= stiffness constant of the spring

a) <u>On doubling the mass:</u>

  • New mass, m'=2m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k} }

T'=2\pi\sqrt{\frac{2m}{k} }

T'=\sqrt{2}\times  2\pi\sqrt{\frac{m}{k} } }

T'=\sqrt{2} \times T

where the factor b=\sqrt{2} as asked in the question.

b) On quadrupling the stiffness constant while other factors are constant:

New stiffness constant, k'=4k

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m}{k'} }\\\\T'=2\pi\sqrt{\frac{m}{4k} }\\\\T'=\frac{1}{2} \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=\frac{1}{2} \times T

where the factor  b=\frac{1}{2}  as asked in the question.

c) On quadrupling the stiffness constant as well as mass:

New stiffness constant, k'=4k

New mas, m'=4m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k'} }\\\\T'=2\pi\sqrt{\frac{4m}{4k} }\\\\T'=1 \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=1 \times T

where factor b=1 as asked in the question.

d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.

so, factor b=1

7 0
1 year ago
Other questions:
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond
    9·1 answer
  • The last page of a book is numbered 764. The book is 3.0 cm thick, not including its covers. What is the average thickness (in c
    8·1 answer
  • A can of soft drink at room temperature is put into the refrigerator so that it will cool. Would you model the can of soft drink
    9·1 answer
  • If the lattice constant of silicon is 5.43 Å, calculate?
    7·1 answer
  • To find the velocity and acceleration vectors for uniform circular motion and to recognize that this acceleration is the centrip
    5·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
  • the container is filled with liquid. the depth of liquid is 60 cm. if it is exerting the pressure of 2000pa. calculate the densi
    11·1 answer
  • A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn doo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!