answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
2 years ago
5

A 3.45-kg centrifuge takes 100 s to spin up from rest to its final angular speed with constant angular acceleration. A point loc

ated 8.00 cm from the axis of rotation of the centrifuge moves with a speed of 150 m/s when the centrifuge is at full speed.
(a) What is the angular acceleration (in rad/s^2) of the centrifuge as it spins up?
(b) How many revolutions does the centrifuge make as it goes from rest to its final angular speed?
Physics
1 answer:
Dafna11 [192]2 years ago
6 0

Answer:

(a) 18.75 rad/s²

(b) 14920.78 rev

Explanation:

(a)

First we find the acceleration of the centrifuge using,

a = (v-u)/t......................... Equation 1

Where v = final velocity, u = initial velocity, t = time.

Given: v = 150 m/s,  u = 0 m/s ( from rest), t = 100 s

Substitute into equation 1

a = (150-0)/100

a = 1.5 m/s²

Secondly we calculate for the angular acceleration using

α = a/r..................... Equation 2

Where α = angular acceleration, r = radius of the centrifuge

Given: a = 1.5 m/s², r = 8 cm = 0.08 m

substitute into equation 2

α = 1.5/0.08

α = 18.75 rad/s²

(b)

Using,

Ф = (ω'+ω).t/2........................... Equation 3

Where Ф = number of revolution of the centrifuge, ω' = initial angular velocity, ω = Final angular velocity.

But,

ω = v/r and ω' = u/r

therefore,

Ф = (u/r+v/r).t/2

where u = 0 m/s (at rest),  = 150 m/s, r = 0.08 m, t = 100 s

Ф = [(0/0.08)+(150/0.08)].100/2

Ф = 93750 rad

If,

1 rad = 0.159155 rev,

Ф = (93750×0.159155) rev

Ф = 14920.78 rev

You might be interested in
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
Elden [556K]

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

5 0
2 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±qseparated by a distance s. T
atroni [7]

Answer:

The magnitude of the force on the dipole due to the charge Q = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi}\dfrac{2qQs^2}{r^3}.

Explanation:

Given that a point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q, separated by a distance s and the charge Q is located in the plane that bisects the dipole.

The magnitude of the electric field that the dipole exerts at the position where the charge Q is held is given by

\rm E = \dfrac{k2qs}{(r^2+s^2)^{3/2}}.

<em>where</em>,

k is the Coulomb's constant, having value = \dfrac{1}{4\pi \epsilon_o}

\epsilon_o is the electrical permittivity of free space.

Also, r>>s, therefore, \rm r^2+s^2\approx r^2.

\rm E = \dfrac{k2qs}{(r^2)^{3/2}}=\dfrac{k2qs}{r^3}.

The magnitude of the electric force F on a charge q placed at a point and the magnitude of the electric field E at that point are related as

\rm F=qE

Therefore, the electric force on the charge Q due to the dipole is given by

\rm F=Q\dfrac{k2qs}{r^3}=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}.

According to Newton's third law of motion, the magnitude of the force exerted by the dipole on the charge Q is same as the magnitude of the force exerted by the charge on the dipole.

Thus, the magnitude of the force on the dipole due to the charge Q = \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole is given by

\rm \tau = Fs\ \sin\theta

Since the charge Q is placed in the plane that bisects the dipole, therefore, \theta = 90^\circ.

\rm \tau = \dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}\cdot s\cdot 1=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs^2}{r^3}.

4 0
2 years ago
A submerged submarine alters its buoyancy so that it initially accelerates upward at 0.325 m/s^2. What is the submarine's averag
scoundrel [369]
<span>You are given a submerged submarine accelerating upward at 0.325 m/s</span>² and the density of sea water is 1.025x10³ kg/m³. The submarine's average density at this time is 22 kg/m³.
7 0
2 years ago
An archer tests various arrowheads by shooting arrows at a pumpkin that is suspended from a tree branch by a rope, as shown to t
erik [133]

Answer:

Bounce 1 ,  pass 3,   emb2

Explanation:

(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle.  So it is  Bounce1, pass3, emb2.  

6 0
2 years ago
The Olympic record for running the 200m dash is 19.3 seconds. What is the average speed for this record?
Aloiza [94]
I think it’s c. if not i’m sorry!!
3 0
2 years ago
Other questions:
  • An object is falling from a height of 7.5 meters. At what height will its velocity be 7 meters/second?
    5·1 answer
  • the coefficient of static friction between a 40 kg picnic table and the ground below is .43. what is the greatest horizontal for
    14·2 answers
  • The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
    6·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
    14·1 answer
  • Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the hear
    13·1 answer
  • Car A rounds a curve of 150‐m radius at a constant speed of 54 km/h. At the instant represented, car B is moving at 81 km/h but
    11·2 answers
  • The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
    9·1 answer
  • In this experiment, you need to examine the idea of thermal energy transfer. Using a controlled experiment, what might a good qu
    12·3 answers
  • A turntable of radius R1 is turned by a circular rubberroller of radius R2 in contact with it at their outeredges. What is the r
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!