' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
15.1°
Explanation:
The horizontal velocity of the hockey puck is constant during the motion, since there are no forces acting along this direction:

Instead, the vertical velocity changes, due to the presence of the acceleration due to gravity:
(1)
where
is the initial vertical velocity
g = 9.8 m/s^2 is the gravitational acceleration
t is the time
Since the hockey puck falls from a height of h=2.00 m, the time it needs to reach the ground is given by

Substituting t into (1) we find the final vertical velocity

where the negative sign means that the velocity is downward.
Now that we have both components of the velocity, we can calculate the angle with respect to the horizontal:

Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Answer:
(a) Eₐ = 6.36 J/s
(b) Eₐ = 4.64 J/s
Explanation:
Stefan-Boltzmann law: States that the total energy per second radiated or absorbed by a black body is directly proportional to the absolute temperature.
Using, Stefan-Boltzmann equation
Eₐ =eσAT⁴ ................ Equation 1
where Eₐ = Radiant energy absorbed per seconds, e = emissivity, σ = stefan - boltzman constant, A = Surface area. and T = temperature in kelvin
(a) Where e = 0.89, σ = 5.67 ×10⁻⁸ watt/m²/K⁴, A = 140 cm² = 140 cm²(m²/10000cm²) = 0.014 m², T = 35 °C = (35 + 273) K = 308 K.
Applying these values in equation 1 above,
Eₐ = 0.89 × 5.67 ×10⁻⁸ × 0.014 × (308)⁴
Eₐ =6.36 J/s
(b) when e = 0.65,
∴ Eₐ = 0.65 × 5.67 × 10⁻⁸ × 0.014 × (308)⁴
Eₐ = 4.64 J/s