<span>Frequency = 394 Hz
Length of the string L = 81 cm = 0.81 m
Mass of the string = 0.002 kg
Tension T = ?
Wave length of the string is two times the length.
n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
Therefore L = v / 2f => v = 2fL
Deriving form force equation, force here is tension T so
v = squareroot of (TL/m) hence
2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
T = 1005.9 N = 1.006 x 10^3 N</span>
Answer:
0.5 m/s2
Explanation:
Step 1:
Data obtained from the question.
Total Mass = 60Kg
Net force = 30N
Acceleration =?
Step 2
Determination of the acceleration.
Force = Mass x Acceleration.
With the above equation, we can easily obtain the acceleration as follow:
30 = 60 x Acceleration
Divide both side by 60
Acceleration = 30/60
Acceleration = 0.5 m/s2
Now, we can thus say that the acceleration at that moment is 0.5 m/s2
<span>All soils have completely different horizon patterns.</span>
Answer:
Second pit is 375 m deeper compared to first pit.
Explanation:
We have equation of motion s = ut + 0.5at²
First object hits the ground after 5 seconds,
Initial velocity, u = 0 m/s
Acceleration, a = 10 m/s²
Time, t = 5 s
Substituting,
s = ut + 0.5 at²
s = 0 x 5 + 0.5 x 10 x 5²
s = 125 m
Depth of pit 1 = 125 m
Second object hits the ground after 10 seconds,
Initial velocity, u = 0 m/s
Acceleration, a = 10 m/s²
Time, t = 10 s
Substituting,
s = ut + 0.5 at²
s = 0 x 10 + 0.5 x 10 x 10²
s = 500 m
Depth of pit 2 = 500 m
Difference in depths = 500 - 125 = 375 m
Second pit is 375 m deeper compared to first pit.
Answer: the correct answer is 7.8026035971 x 10^(-13) joule
Explanation:
Use Energy Conservation. By ``alpha decay converts'', we mean that the parent particle turns into an alpha particle and daughter particles. Adding the mass of the alpha and daughter radon, we get
m = 4.00260 u + 222.01757 u = 226.02017 u .
The parent had a mass of 226.02540 u, so clearly some mass has gone somewhere. The amount of the missing mass is
Delta m = 226.02540 u - 226.02017 u = 0.00523 u ,
which is equivalent to an energy change of
Delta E = (0.00523 u)*(931.5MeV/1u)
Delta E = 4.87 MeV
Converting 4.87 MeV to Joules
1 joule [J] = 6241506363094 mega-electrón voltio [MeV]
4 mega-electrón voltio = 6.40870932 x 10^(-13) joule
4.87 mega-electrón voltio = 7.8026035971 x 10^(-13) joule