answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
2 years ago
7

Two blocks, with masses m and 3m, are attached to the ends of a string with negligible mass that passes over a pulley, as shown

above. The pulley has negligible mass and friction and is attached to the ceiling by a bracket. The blocks are simultaneously released from rest.
(a) Derive an equation for the speed v of the block of mass 3m after it falls a distance d in terms of m, d, and physical constants, as appropriate.
(b) Determine the work done by the string on the two-block system as each block moves a distance d .
(c) The acceleration of the center of mass of the blocks-string-pulley system has magnitude aCOM . Briefly explain, in terms of any external forces acting on the system, why aCOM is less than g .

Physics
2 answers:
olasank [31]2 years ago
8 0

Answer:

a)  v = √ g x , b)  W = 2 m g d , c)    a = ½ g

Explanation:

a) For this exercise we use Newton's second law, suppose that the block of mass m moves up

            T-W₁ = m a

            W₃ - T = M a

            w₃ - w₁ = (m + M) a

            a = (3m - m) / (m + 3m) g

            a = 2/4 g

            a = ½ g

the speed of the blocks is

          v² = v₀² + 2 ½ g x

          v = √ g x

b) Work is a scalar, therefore an additive quantity

light block s

           W₁ = -W d = - mg d

3m heavy block

             

            W₂ = W d = 3m g d

the total work is

             W = W₁ + W₂

             W = 2 m g d

c) in the center of mass all external forces are applied, they relate it is

                      a = ½ g

Burka [1]2 years ago
6 0

Answer:

a) v= (g*d)^(1/2)

b) W=(3/2)mgd

c) a=g/2

Explanation:

(a) you first use the second Newton law to determine the dynamic equation for each block (you assume that the acceleration is the same for both blocks):

T_1-W_1=m_1 a=ma\\\\T_2-W_2=-m_2a=-(3m)a

You can assume T1=T2=T because the pulley has a negligible friction and mass. Then from the last two equation you can obtain a:

T-mg=ma\\\\T-3mg=-3ma

you take the difference between the last two equations:

-mg+3mg=ma+3ma\\\\2mg=4ma\\\\a=\frac{g}{2}

for the equation of the velocity of the second block you use:

v^2=v_0^2+2ad\\\\v_o=0m/s\\\\v=\sqrt{2ad}=\sqrt{gd}

b) The work done is given by the following expression:

W_n=-Td+(3m)gd\\\\T=ma+mg=m(\frac{g}{2}+g)=\frac{3}{2}mg\\\\W_n=-\frac{3}{2}mgd+3mgd=\frac{3}{2}mgd

c) a=g/2

You might be interested in
A car traveling at speed v takes distance d to stop after the brakes are applied. What is the stopping distance if the car is in
Vikki [24]

49d

<h3>Further explanation</h3>

This case is about uniformly accelerated motion.

<u>Given:</u>

The initial speed was v takes distance d to stop after the brakes are applied.

<u>Question:</u>

What is the stopping distance if the car is initially traveling at speed 7.0v?

Assume that the acceleration due to the braking is the same in both cases. Express your answer using two significant figures.

<u>The Process:</u>

The list of variables to be considered is as follows.

  • \boxed{u \ or \ v_i = initial \ velocity}
  • \boxed{u \ or \ v_t \ or \ v_i = terminal \ or \ final \ velocity}
  • \boxed{a = acceleration \ (constant)}
  • \boxed{d = distance \ travelled}

The formula we follow for this problem are as follows:

\boxed{ \ v^2 = u^2 + 2ad \ }

  • a = acceleration (in m/s²)
  • u = initial velocity  
  • v = final velocity
  • d = distance travelled

Step-1

We substitute v as the initial speed, distance of d, and zero for final speed into the formula.

\boxed{ \ 0 = v^2 + 2ad \ }

\boxed{ \ v^2 = -2ad \ }

Both sides are divided by -2d, we get \boxed{ \ a = \Big( -\frac{v^2}{2d} \Big) \ . . . \ (Equation-1) \ }

Step-2

We substitute 7.0v as the initial speed, zero for final speed, and Equation-1 into the formula.

\boxed{ \ 0 = (7.0v)^2 + 2 \Big( -\frac{v^2}{2d} \Big)d' \ }

Here d' is the stopping distance that we want to look for.

\boxed{ \ 2 \Big( \frac{v^2}{2d} \Big)d' = (7.0v)^2 \ }

We crossed out 2 in above and below.

\boxed{ \ \Big( \frac{v^2}{d} \Big)d' = 49.0v^2 \ }

We multiply both sides by d.

\boxed{ \ v^2 d' = 49.0v^2 d \ }

We crossed out v^2 on both sides.

\boxed{\boxed{ \ d' = 49.0d \ }}

Hence, by using two significant figures, the stopping distance if the car is initially traveling at speed 7.0v is 49d.

<h3>Learn more</h3>
  1. Determine the acceleration of the stuffed bear brainly.com/question/6268248
  2. Particle's speed and direction of motion brainly.com/question/2814900
  3. About the projectile motion brainly.com/question/2746519

Keywords: a car traveling at speed v, takes distance d to stop after the brakes are applied, the stopping distance, if the car is initially traveling at speed 7.0v, the acceleration due to the braking is the same, two significant figures.

6 0
2 years ago
Read 2 more answers
A beam of unpolarized light with intensity I0 falls first upon a polarizer with transmission axis θTA,1 then upon a second polar
loris [4]

Answer:

The intensity I₂ of the light beam emerging from the second polarizer is zero.

Explanation:

Given:

Intensity of first polarizer = Io/2

For the second polarizer, the intensity is equal:

I_{2} =\frac{I_{o} }{2} (cos\theta )^{2} =\frac{I_{o} }{2} (cos90)^{2} =0

5 0
2 years ago
4. In a closed system consisting of a cannon and a cannonball, the kinetic energy of a cannon is 72,000 J. If the cannonball is
FromTheMoon [43]

Answer:

D an B

Explanation:

3 0
2 years ago
Read 2 more answers
The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. Which comparison is best supported by this
svlad2 [7]

Answer: They are in the same group because they have similar chemical properties, but they are in different periods because they have very different atomic numbers.

Explanation: On Edgenuity!!

7 0
2 years ago
An electric eel (Electrophorus electricus) can produce a shock of up to 600 V and a current of 1 A for a duration of 2 ms, which
Irina-Kira [14]

Answer:

2\times 10^{-3}\ C

6000

1.2 J

3.33\times 10^{-6}\ F

Explanation:

I = Current = 1 A

t = Time = 2 ms

n = Number of electrocyte

V = Voltage = 100 mV

Charge is given by

Q=It\\\Rightarrow Q=1\times 2\times 10^{-3}\\\Rightarrow Q=2\times 10^{-3}\ C

The charge flowing through the electrocytes in that amount of time is 2\times 10^{-3}\ C

The maximum potential is given by

V_m=nV\\\Rightarrow n=\dfrac{V_m}{V}\\\Rightarrow n=\dfrac{600}{100\times 10^{-3}}\\\Rightarrow n=6000

The number of electrolytes is 6000

Energy is given by

E=Pt\\\Rightarrow E=V_mIt\\\Rightarrow E=600\times 1\times 2\times 10^{-3}\\\Rightarrow E=1.2\ J

The energy released when the electric eel delivers a shock is 1.2 J

Equivalent capacitance is given by

C_e=\dfrac{Q}{V_m}\\\Rightarrow C_e=\dfrac{2\times 10^{-3}}{600}\\\Rightarrow C_e=3.33\times 10^{-6}\ F

The equivalent capacitance of all the electrocyte cells in the electric eel is 3.33\times 10^{-6}\ F

8 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • Daniel is 50.0 meters away from a building. He observes that his line-of-sight to the tip of the building makes an angle of 63.0
    14·1 answer
  • Peter often gets sore muscles in the back of his lower legs from jogging what flexibility exercise could help him
    7·1 answer
  • Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as
    7·1 answer
  • Two identical metal spheres A and B are in contact. Both are initially neutral. 1.0× 10 12 electrons are added to sphere A, then
    15·1 answer
  • A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
    5·1 answer
  • The momentum of an object is determined to be 7.2 ×× 10-3 kg⋅m/skg⋅m/s. Express this quantity as provided or use any equivalent
    10·1 answer
  • Electric field lines always begin at _______ charges (or at infinity) and end at _______ charges (or at infinity). One could als
    5·1 answer
  • A person shooting at a target from a distance of 450 metres finds that the sound of the bullet hitting the target comes 1 / 2 se
    5·1 answer
  • A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!