<span>Waves hitting at an angle and then bending around features of the coast is known as Wave refraction
When waves hitting a specific angle, some part of the waves will be closer to the shallow part of the water and some part will be closer to the deeper part of the water, which makes the wave became somehow bent around the shore.</span>
Answer:
The value is 
Explanation:
Generally the velocity attained by the sled after t = 3.10 s is mathematically evaluated using the kinematic equation as follows

Here u = 0 \ m/s
a = 13.5 
So
=>
The is distance it covers at this time is

=> 
=> 
Now when sled stops its the final velocity is
while the initial velocity will be the velocity after its acceleration i.e
So

Here
, the negative sign shows that it is deceleration
So

=> 
I assume it woukd be higher energy light waves. when fire is at its hottest state its blue because its burning off so much.
Answer:
A) 0.0 kJ
Explanation:
Change in the internal energy of the gas is a state function
which means it will not depends on the process but it will depends on the initial and final state
Also we know that internal energy is a function of temperature only
so here the process is given as isothermal process in which temperature will remain constant always
here we know that

now for isothermal process since temperature change is zero
so change in internal energy must be ZERO
<span>Answer:
KE = (11/2)mω²r²,
particle B must have mass of 2m, while A has mass m.
Then the moment of inertia of the system is
I = Σ md² = m*(3r)² + 2m*r² = 11mr²
and then
KE = ½Iω² = ½ * 11mr² * ω² = 11mr²ω² / 2
So I'll proceed under that assumption.
For particle A, translational KEa = ½mv²
but v = ω*d = ω*3r, so KEa = ½m(3ωr)² = (9/2)mω²r²
For particld B, translational KEb = ½(2m)v²
but v = ω*r, so KEb = ½(2m)ω²r²
so total translational KE = (9/2 + 2/2)mω²r² = 11mω²r² / 2
which is equal to our rotational KE.</span>