Answer:
<em>The number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>
Explanation:
Number of mole = reacting mass/molar mass
n = R.m/m.m......................... Equation 1
Where n = number of moles, R.m = reacting mass, m.m = molar mass.
For palladium,
R.m = 0.039 g and m.m = 106.42 g/mol
Substituting theses values into equation 1
n = 0.039/106.42
n = 0.00037 mole
For tantalum,
R.m = 0.0073 and m.m = 180.9 g/mol
Substituting these values into equation 1
n = 0.0073/180.9
n = 0.0000404 mole
<em>Therefore the number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
The question for this problem would be the minimum headphone delay, in ms, that will cancel this noise.
The 200 Hz. period = (1/200) = 0.005 sec. It will need to be delayed by 1/2, so 0.005/2, that is = 0.0025 sec. So converting sec to ms, will give us the delay of:Delay = 2.5 ms.
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
The brick, even though the brick would end up traveling faster, it most likely has a larger surface area therefore it would have more air resistance.