answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
2 years ago
10

Calculate the mag-netic field (magnitude and direc-tion) at a point p due to a current i=12.0 a in the wire shown in fig. p28.68

. segment bc is an arc of a circle with radius 30.0 cm, and point p is at the center of cur- vature of the arc. segment dais an arc of a circle with radius 20.0 cm, and point p is at its cen- ter of curvature. segments cd and ab are straight lines of length 10.0 cm each

Physics
1 answer:
creativ13 [48]2 years ago
3 0

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The magnitude is   B= 4.2 *10^ {-6}T , the direction is into the page

Explanation:

From the question we are told that

        The current  is i = 12.0 A

        The radius of arc  bc is r_{bc} = 30.0 \ cm =\frac{30}{100} = 0.3m

        The radius  of arc da is r_{da} = 20.0 \ cm = \frac{20}{100} = 0.20 \ m

        The length of segment cd and ab is = l = 10cm = \frac{10}{100} = 0.10 m

The objective of the solution is to obtain the magnetic field

    Generally magnetic due to the current flowing in the arc is mathematically represented as

             B = \frac{\mu_o I}{4 \pi r}

 Here I is the current

         \mu_o is the permeability of free space with a value of 4\pi *10^{-7}T \cdot m/A

            r is the distance

Considering Arc da

         B_{da} = \frac{\mu_o I}{4 \pi r_{da}} \theta

Where \theta is the angle the arc da makes with the center  from the diagram its value is  \theta = 120^o = 120^o * \frac{\pi}{180} = \frac{2\pi}{3} rad

     Now substituting values into formula for magnetic field for da

                    B_{da} = \frac{4\p *10^{-7} * 12}{4 \pi (0.20)}[\frac{2 \pi}{3} ]

                           = \frac{10^{-7} * 12}{0.20} * [\frac{2 \pi}{3} ]

                   B_{da}= 12.56*10^{-6} T

Looking at the diagram to obtain the direction of the current and using right hand rule then we would obtain the the direction of magnetic field due to da is into the pages of the paper

Considering Arc bc

             B_{bc} = \frac{\mu_o I}{4 \pi r_{bc}} \theta

Substituting value

          B_{bc} = \frac{4 \pi *10^{-7} * 12}{4 \pi (0.30)} [\frac{2 \pi}{3} ]

                B_{bc}= 8.37*10^{-6}T

Looking at the diagram to obtain the direction of the current and using right hand rule then we would obtain the the direction of magnetic field due to bc is out of  the pages of the paper

Since the line joining P to segment bc and da makes angle = 0°

     Then the net magnetic field would be

                 B = B_{da} - B{bc}

                     = 12.56*10^{-6} - 8.37*10^{-6}

                     = 4.2 *10^ {-6}T

       Since B_{da} > B_{bc} then the direction of the net charge would be into the page

 

You might be interested in
This is a cell, which is the basic unit of all life. All organs in human bodies are made of cells and require oxygen to survive.
kotegsom [21]
The two systems that work together to deliver oxygen are D, respiratory and cardiovascular
5 0
1 year ago
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
1 year ago
Read 2 more answers
Un cable está tendido sobre dos postes colocados con una separación de 10 m. A la mitad del cable se cuelga un letrero que provo
lisabon 2012 [21]

Answer:

El peso del cartel es 397,97 N

Explanation:

La tensión dada en cada segmento del cable = 2000 N

El desplazamiento vertical del cable = 50 cm = 0,5 m

La distancia entre los polos = 10 m

La posición del letrero en el cable = En el medio = 5

El ángulo de inclinación del cable a la vertical = tan⁻¹ (0.5 / 5) = 5.71 °

El peso del letrero = La suma del componente vertical de la tensión en cada lado del letrero

El peso del signo = 2000 × sin (5.71 grados) + 2000 × sin (5.71 grados) = 397.97 N

El peso del signo = 397,97 N.

8 0
2 years ago
If this energy were used to vaporize water at 100.0 ∘C, how much water (in liters) could be vaporized? The enthalpy of vaporizat
Zanzabum

Answer:

0.429 L of water

Explanation:

First to all, you are not putting the value of the energy given to vaporize water, so, to explain better this problem, I will assume a value of energy that I took in a similar exercise before, which is 970 kJ.

Now, assuming that the water density is 1 g/mL, this is the same as saying that 1 g of water = 1 mL of water

If this is true, then, we can assume that 1 kg of water = 1 L of water.

Knowing this, we have to use the expression to get energy which is:

Q = m * ΔH

Solving for m:

m = Q / ΔH

Now "m" is the mass, but in this case, the mass of water is the same as the volume, so it's not neccesary to do a unit conversion.

Before we begin with the calculation, we need to put the enthalpy of vaporization in the correct units, which would be in grams. To do that, we need the molar mass of water:

MM = 18 g/mol

The enthalpy in mass:

ΔH = 40.7 kJ/mol / 18 g/mol = 2.261 kJ/g

Finally, solving for m:

m = 970 / 2.261 = 429 g

Converting this into volume:

429 g = 429 mL

429 / 1000 = 0.429 L of water

3 0
2 years ago
You need to determine the density of an unknown liquid and decide to perform an experiment. You notice that a wooden block float
Allushta [10]

Answer:

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

Explanation:

The density of a liquid is inversely proportional to the volume (height) of object submerged in it.

High density liquid possess higher buoyant force preventing objects from submerging.

p ∝ 1/V ∝ 1/h

since V = Ah

pu/pw = hw/hu

pu = pwhw/hu

Where;

p = density

h = height submerged

pu and pw is the density of unknown liquid and water respectively

hu and hw is the height of object submerged in unknown liquid and water respectively

pw = 1000kg/m^3

hu = 4.6cm = 0.046m

hw = 5.8cm = 0.058m

Substituting the given values;

pu = 1000×0.058/0.046

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

5 0
1 year ago
Other questions:
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • Which statement best describes the term absolute threshold?
    15·1 answer
  • A highway patrolman traveling at the speed limit is passed by a car going 20 mph faster than the speed limit. After one minute,
    13·2 answers
  • The pfsense firewall, like other firewalls on the market, relies on __________ to expose an ip address from the private network
    12·1 answer
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • A cat accelerates from rest to 10m/s when it sees a dog. This takes 2 seconds. What was the acceleration of the cat
    11·2 answers
  • Which of the following diagrams involves a virtual image ?
    9·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • Paula is studying two different animals. Both animals are classified within the same genus, but they are different species. Base
    14·2 answers
  • The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!