Answer:

Explanation:
If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s
so here the total time of the motion above the top point of pole is given as

now we have



so this is the speed at the top of flag pole
now we have



now the height of flag pole is given as



Answer:
T=183.21K
Explanation:
We have to take into account that the system is a ideal gas. Hence, we have the expression

where P is the pressure, V is the volume, n is the number of moles, T is the temperature and R is the ideal gas constant.
Thus, it is necessary to calculate n and V
V is the volume of a sphere

V=8.86*10^{50}L
and for n

Hence, we have (1 Pa = 9.85*10^{-9}atm)

hope this helps!!
Conservation of linear momentum:
m*v inital = m*v final
0.06*0.7 + 0.03*0 = 0.06*(-0.2) + 0.03*v
(my algebra, or use ur calculator: 0.06*.07=0.042, etc ... or ur teacher may think you got some help)
0.06*(0.7+0.2)=0.03*v, v = 0.06*0.9/0.03=1.8 m/s
Answer 1.8 m/s (positive, to the right).
Answer:
Part A - 3N/m
Part B - see attachment
Part C - 4.9 × 10-³J
Part D - E = 1/2kd² + 1/2mv² + mgh
Explanation:
This problem requires the knowledge of simple harmonic motion for cimplete solution. To find the spring constant in part A the expression relating the force applied to a spring and the resulting stretching of the spring (hooke's law) is required which is F = kx.
The free body diagram can be found in the attachment. Fp(force of pull), Ft(Force of tension) and W(weight).
The energy stored in the pring as a result of the stretching of d = 5.7cm is 1/2kd².
Part D
Three forces act on the spring-monkey system and they do work in different forms: kinetic energy 1/2mv² , elastic potential
energy due to the restoring force in the spring or the tension force 1/2kd², and the gravitational potential energy mgh of the position of the system. So the total energy of the system E = 1/2kd² + 1/2mv² + mgh.
Answer:
The magnitude of the average force exerted on the water by the blade is 960 N.
Explanation:
Given that,
The mass of water per second that strikes the blade is, 
Initial speed of the oncoming stream, u = 16 m/s
Final speed of the outgoing water stream, v = -16 m/s
We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :



F = -960 N
So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.