answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
2 years ago
10

A rod of mass M and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m, moving w

ith speed V, strikes the rod at angle θ from the normal and sticks to the rod after the collision. What is the angular speed ωf of the system immediately after the collision, in terms of system parameters and I?
Physics
1 answer:
klio [65]2 years ago
3 0

Answer:

w_f =  m*V*cos(Q_n) / L*(m+M)

Explanation:

Given:

- mass of the putty ball m

- mass of the rod M

- Velocity of the ball V

- Length of the rod L

- Angle the ball makes before colliding with rod  Q_n

Find:

What is the angular speed ωf of the system immediately after the collision,

Solution:

- We can either use conservation of angular momentum or conservation of Energy. We will use Conservation of angular momentum of a system:

                                         L_before = L_after

- Initially the rod is at rest, and ball is moving with the velocity V at angle Q from normal to the rod. We know that the component normal to the rod causes angular momentum. Hence,

                                         L_before = L_ball = m*L*V*cos(Q_n)

- After colliding the ball sicks to the rod and both move together with angular speed w_f

                                         L_after = (m+M)*L*v_f

Where, v_f = L*w_f

                                         L_after = (m+M)*L^2 * w_f

- Now equate the two expression as per conservation of angular momentum:

                                       m*L*V*cos(Q_n) = (m+M)*L^2 * w_f

                                       w_f =  m*V*cos(Q_n) / L*(m+M)

You might be interested in
A ball was kicked upward at a speed of 64.2 m/s. how fast was the ball going 1.5 seconds later
UNO [17]

Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity.  If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.

                (64.2 m/s)  -  [ (9.8 m/s² ) x (1.5 sec) ] 

            =  (64.2 m/s)  -       [      14.7 m/s      ]

            =             49.5 m/s  .  (upward)

7 0
2 years ago
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
1 year ago
Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
Ber [7]

Answer:

(A.) (- 4.33, 6.33 , 0); (B.) (- 3.66, 7.5, 0); (C.) average at (A) (- 4.33, 6.33 , 0) ; (D.) (- 0.2165, 0.3165, 0)

Explanation:

Given the following :

Time - - - - - - - 6.6s - - - - - - - - - 6.9s - - - - - 7.2s

Position - (1.8,5.0,0) - (0.5,6.9,0) - - (−0.4,9.5,0)

(a) Between 6.6 s and 6.9 s, what was the bee's average velocity?

Vavg = Distance / time

[(0.5,6.9,0) - (1.8,5.0,0)] / 6.9 - 6.6

Vavg = [(0.5 - 1.8), (6.9 - 5.0), (0 - 0)] / 0.3

Vavg = - 1.3 / 0.3, 1.9/0.3, 0/3

Vavg = (- 4.33, 6.33 , 0)

b) Between 6.6 s and 7.2 s, what was the bee's average velocity?

Vavg = [(−0.4,9.5,0) - (1.8,5.0,0)] / 7.2 - 6.6

Vavg = - 2. 2/0.6, 4.5/0.6, 0/0.6

Vavg = (- 3.66, 7.5, 0)

c.) Of the two averages (- 4.3, 6.3 , 0) is closer to the instantaneous Velocity at 6.6s

D.) (d) Using the best information available, what was the displacement of the bee during the time interval from 6.6 s to 6.65 s?

Displacement = Velocity * time

Vavg between 6.6 to 6.9 ; time = (6.65 - 6.6) = 0.05 s

= (- 4.33, 6.33 , 0) * 0.05

= (- 0.2165, 0.3165, 0)

5 0
2 years ago
Suppose Galileo dropped a lead ball (100 kilograms) and a glass ball (1 kilogram) from the Leaning Tower of Pisa. Which one hit
Reika [66]

The Answer is C Both at the same time

3 0
2 years ago
Consider four different oscillating systems, indexed using i = 1 , 2 , 3 , 4 . Each system consists of a block of mass mi moving
Rzqust [24]

Answer:

The order is 2>4>3>1 (TE)

Explanation:

Look up attached file

4 0
2 years ago
Other questions:
  • An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
    15·2 answers
  • A softball is thrown from the origin of an x-y coordinate system with an initial speed of 18 m/s at an angle of 35∘ above the ho
    12·1 answer
  • Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
    15·1 answer
  • Two identical balls are at rest and side by side at the top of a hill. You let one ball, A, start rolling down the hill. A littl
    14·1 answer
  • Al llegar a detenerse, un automóvil deja marcas de derrape de 92m de largo sobre una autopista. Si se supone una desaceleración
    15·1 answer
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • Un cuerpo se mueve en línea recta segun la ecuación x=10+20t-4.9t2 (x está expresado en metros y t en segundos). ¿Cuál es la lon
    14·2 answers
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • A paper in the journal Current Biology tells of some jellyfish-like animals that attack their prey by launching stinging cells i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!