Behaviorists generally claimed that conditioning occurred without thinking or reasoning ans was simply a result of consequences or reinforcement. Cognitive psychologists demonstrated that thinking and reasoning (cognition) influences the conditioning processes and that many behaviors that are conditioned depend on the type of cognitive reasoning that occurs during conditioning. Therefore, as one is being conditioned to respond to environmental stimuli or is responding to a consequence, they are also pondering and thinking about the process occuring. Cognition is often the reason individuals are not all conditioned in the same manner.
Answer:
speed = 44.9m/s
x = 35.5 m, y = 58.0m
Explanation:
A car on a circular track with constant angular velocity ω can be described by the equation of position r:

The velocity v is given by:

The acceleration a:

From the given values we get two equations:

We also know:

The magnitude of the acceleration a is:

The magnitude of position r is:

Plugging in to the equation for a(t):

and solving for ω:

Now solve for time t:

Using the calculated values to compute v(t):

The speed of the car is:

The position r:

Answer:
0.018 J
Explanation:
The work done to bring the charge from infinity to point P is equal to the change in electric potential energy of the charge - so it is given by

where
is the magnitude of the charge
is the potential difference between point P and infinity
Substituting into the equation, we find

Answer:
3000 kg.m/s
Explanation:
Momentum, p is a product of mass and velocity hence
p=mv where m is mass and v is velocity.
Change in momentum is given by
where subscripts f and i represent final and initial respectively. Since the lorry finally comes to rest then the final velocity is zero. Substituting the given figures then
Change in momentum= 6000(0-0.5)=-3000 kg.m/s
Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm
