Answer:
please read the answer below
Explanation:
The angular momentum is given by

By taking into account the angles between the vectors r and v in each case we obtain:
a)
v=(2,0)
r=(0,1)
angle = 90°

b)
r=(0,-1)
angle = 90°

c)
r=(1,0)
angle = 0°
r and v are parallel
L = 0kgm/s
d)
r=(-1,0)
angle = 180°
r and v are parallel
L = 0kgm/s
e)
r=(1,1)
angle = 45°

f)
r=(-1,1)
angle = 45°
the same as e):
L = 5kgm/s
g)
r=(-1,-1)
angle = 135°

h)
r=(1,-1)
angle = 135°
the same as g):
L = 5kgm/s
hope this helps!!
Answer:
Tarzan, who weighs 688N, swings from a cliff at the end of a convenient vine that is 18m long. From the top of the cliff to the bottom of the swing he descends by 3.2m.
Explanation:
Answer: The released electromagnetic wave will travel in +y direction
Explanation:
It should be noted that, in a situation, whereby an excited hydrogen atom releases an electromagnetic wave to return to its normal state. And it's also evident that the futuristic dual electric/magnetic field tester on the electromagnetic wave to find the directions of the electric field and magnetic field is used. Eventually, your device tells you that the electric field is pointing in the positive y direction and the magnetic field is pointing in the positive x direction. Therefore, the released electromagnetic wave will travel in +y direction.
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t) by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150