answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Assoli18 [71]
2 years ago
9

A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th

e shot hits the ground 2.08 s later. You can ignore air resistance.
Part A

What is the x-component of the shot's acceleration while in flight?

Part B

What is the y-component of the shot's acceleration while in flight?

Part C

What is the x-component of the shot's velocity at the beginning of its trajectory?

Part D

What is the y-component of the shot's velocity at the beginning of its trajectory?

Part E

What is the x-component of the shot's velocity at the end of its trajectory?

Part F What is the y-component of the shot's velocity at the end of its trajectory?
Physics
1 answer:
alina1380 [7]2 years ago
3 0

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

You might be interested in
If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
Nataliya [291]
The answer would be negative charge because +, and - dont like each other so they retract from each other.
3 0
2 years ago
Read 2 more answers
At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
lys-0071 [83]

Answer:

The current is changing at the rate of 0.20 A/s

Explanation:

Given;

inductance of the inductor, L = 5.0-H

current in the inductor, I = 3.0 A

Energy stored in the inductor at the given instant, E = 3.0 J/s

The energy stored in inductor is given as;

E = ¹/₂LI²

E = ¹/₂(5)(3)²

E = 22.5 J/s

This energy is increased by 3.0 J/s

E = 22.5 J/s + 3.0 J/s = 25.5 J/s

Determine the new current at this given energy;

25.5 = ¹/₂LI²

25.5 = ¹/₂(5)(I²)

25.5 = 2.5I²

I² = 25.5 / 2.5

I² = 10.2

I = √10.2

I = 3.194 A/s

The rate at which the current is changing is the difference between the final current and the initial current in the inductor.

= 3.194 A/s - 3.0 A/s

= 0.194 A/s

≅0.20 A/s

Therefore, the current is changing at the rate of 0.20 A/s.

5 0
2 years ago
The center of the Hubble space telescope is 6940 km from Earth’s center. If the gravitational force between Earth and the telesc
Luda [366]
The answer is 11,121 kg
5 0
1 year ago
Read 2 more answers
1. A 3.0 kg mass is tied to a rope and swung in a horizontal circle. If the velocity of the mass is 4.0 ms and
saul85 [17]

10.67m/s²

32N

Explanation:

Given parameters:

Mass of the body = 3kg

velocity of the mass = 4m/s

radius of circle = 0.75m

Unknown:

centripetal acceleration = ?

centripetal force = ?

Solution:

The centripetal force is the force that keeps a radial body in its circular motion. It is directed inward:

   Centripetal acceleration  = \frac{v^{2} }{r}

   v is the velocity of the body

    r is the radius of the circle

  putting in the parameters:

   Centripetal acceleration = \frac{4^{2} }{0.75}

    Centripetal acceleration = 10.67m/s²

Centripetal force = m  \frac{v^{2} }{r}

          m is the mass

 Centripetal force = mass x centripetal acceleration

                              = 3 x 10.67

                              = 32N

learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

4 0
2 years ago
The total charge that an automobile battery can supply without being recharged is given in terms of ampere-hours. A typical 12 V
Lelechka [254]

Answer:

7.894 Hours.

Explanation:

Based on information number hours that this battery will last with give load  has mathematical relation of.

t = \frac{60Ah}{load in amperes.}

with load 60A t =  1h, 30A t = 2h so on and forth.

two head lights draw total current of 2x3.8A = 7.6A.

putting this in above relation gives.

t = \frac{60Ah}{7.6A}=7.894 h.

That is how long will it be before battery is dead.

6 0
1 year ago
Other questions:
  • Make a diagram showing the forces acting on a coasting bike rider traveling at 25km/h on a flat roadway.
    14·2 answers
  • A circuit contains a 6.0-v battery, a 4.0-w resistor, a 0.60-µf capacitor, an ammeter, and a switch all in series. what will be
    6·2 answers
  • In a movie, a character cuts a wire, which stops the countdown timer of a bomb. What does cutting the wire do to the circuit?
    7·2 answers
  • The measure of one of the small angles of a right triangle is 45 less than twice the measure of the other small angle. Find the
    14·1 answer
  • At 213.1 K a substance has a vapor pressure of 45.77 mmHg. At 243.7 K it has a vapor pressure of 193.1 mm Hg. Calculate its heat
    11·1 answer
  • From Kepler's third law, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to:
    5·1 answer
  • Some gliders are launched from the ground by means of a winch, which rapidly reels in a towing cable attached to the glider. Wha
    6·1 answer
  • Assume that when you stretch your torso vertically as much as you can, your center of mass is 1.0 m above the floor. The maximum
    8·1 answer
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
  • Arrange an 8-, 12-, and 16-Ω resistor in a combination that has a total resistance of 8.89 Ω pls with de work
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!