<u>Answer:</u>
15.97 N force is tending to pull Rover forward
<u>Explanation:</u>
The woman pulls on the leash with a force of 20.0 N at an angle of 37° above the horizontal. The arrangement is shown in the given figure,
We nee to find the pulling force P. The 20.0 N force has two components, 20.0 cos 37 in horizontal direction and 20.0 sin 37 in vertical direction.
The horizontal component is equal to pulling force P, which will pull Rover forward/
So, P = 20.0 cos 37 = 15.97 N
15.97 N force is tending to pull Rover forward.
Answer:
The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular
Explanation:
The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.
The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
Answer:

Explanation:
We are given that
Initial velocity=u=18ft/s
Final velocity,v=38ft/s
Time=t=3 s
We have to find the average acceleration over that 3 s period.
We know that
Average acceleration,a=
Using the formula
Average acceleration,a=
Average acceleration,a=
Average acceleration,a=
Hence, the average acceleration=