Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s
The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s
The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s
Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.
Answer;
- 15 J
Explanation;
-Potential energy is defined as mechanical energy, stored energy, or energy caused by its position.
-For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m /s² at the surface of the earth) and h is the height in meters.
Potential energy of the rabbit at the peak of its height is
PE = (3)(10)(0.5) = 15 J
(around 14.7 but because energy is lost, it is less than that)
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally
