Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.
<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>
<span> </span>
Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)
Answer:
the inductive reactance of the coil is 1335.35 Ω
Explanation:
Given;
inductance of the coil, L = 250 mH = 0.25 H
effective current through the coil, I = 5 mA
frequency of the coil, f = 850 Hz
The inductive reactance of the coil is calculated as;

Therefore, the inductive reactance of the coil is 1335.35 Ω
Answer:
Acceleration, 
Explanation:
Given that,
The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope, m = 100 kg
Force exerted by the doges on the rope attached to the front sled, F = 240 N
To find,
The acceleration of the sleds.
Solution,
Let a is the acceleration of the sleds. The product of mass and acceleration is called force. Its expression is given by :
F = ma

(m = 2m)

So, the acceleration of the sleds is
.