Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
Answer:
24.348mm
Explanation:
NB: I'll be attaching pictures so as to depict missing mathematical expressions or special characters which are not easily found on keyboards
K = d / €^n
Note : d represents the greek alphabet epsilion.
K = 345 / 0.02⁰.²² = 816mPa
The true strain based upon the stress of 414mPa =
€= (€/k)^1/n = (414/816)¹/⁰.²² = 0.04576
However the true relationship between true strain and length is given by
€ = ln(Li/Lo)
Making Li the subject of formula by rearranging,
Li = Lo.e^€
Li = 520e⁰.⁰⁴⁵⁷⁶
Li = 544.348mm
The amount of elongation can be calculated from
Change in L = Li - Lo = 544.348 - 520 change in L = 24.348mm.
If you did this then it could lead to cheating or someone else getting hurt.
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally