Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m
Answer:velocity = 7.26 * 10^6 m/sec
Explanation:The rule that is used to solve this problem is shown in the attached image.
The variables are as follows:
k = 8.99 * 10^9 Nm^2 / C^2
e is the electron charge = -1.6 * 10^-19 C
q is the charge given = 1 * 10^-9 C
m is the mass of the electron = 9.11 * 10^-31
r1 is the radius of starting point = 3 cm = 0.03 m
r2 is the radius of the sphere = 2 cm = 0.02 m
Substitute with the givens in the equation to get the value of the velocity
Hope this helps :)
When resistors are connected in series, they act like
a single resistor whose resistance is their sum.
100 ohms and 400 ohms, connected in series, look like
a single resistor of 500 ohms.
Current = (voltage) / (resistance)
= (60 volts) / (500 ohms) = 0.12 A.
________________________
<span>
Current is measured by connecting a meter in series
with an energized component. In other words, a break
is made in the circuit, the meter is connected in the break,
and the current to be measured literally flows through the meter.</span>