Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
Answer:
The stretch cord stores potential energy as a result of stretching but due to kinetic energy, it will move back to its original state. Since air resistance is not being ignored in this case, it will experience a slight delay in stretching at first.
Explanation:
In case, where air resistance is being ignored the stretch cord will stretch as it normally does.
- Air resistance is a force that any object experiences as a result of its motion through the air.
There are various factors that affect air resistance like speed, the density of air, area, the shape of an object etc. Meanwhile, the density of air changes with temperature or altitude. <em>Hence this force is not constant but is thought to be constant during short time frames. </em>
Answer:
C
Explanation:
From above question we know that
A = 6.2 m
f = 1.6 rad/s
t = 3.5 s
x =?
We know that,
x = Acos(2pie ft)
Putting all values in above eq.
x = 6.2 x cos(2x3.142x1.6x3.5)
x = - 4.8
Displacement can never be negative so ignore - sign.
Answer:
B = 15μT
Explanation:
In order to calculate the magnitude of the magnetic field generated by the coaxial cable you use the Ampere's law, which is given by:
(1)
μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current
r: distance from the wire to the point in which B is calculated
In this case you have two currents with opposite directions, which also generates magnetic opposite magnetic fields. Then, you have (but only for r > radius of the cylindrical conductor) the following equation:
(2)
I1: current of the central wire = 2.00A
I2: current of the cylindrical conductor = 3.50A
r: distance = 2.00 cm = 0.02 m
You replace the values of all parameters in the equation (2), and you use the absolute value because you need the magnitude of B, not its direction.

The agnitude of the magnetic field outside the coaxial cable, at a distance of 2.00cm to the center of the cable is 15μT