answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
2 years ago
6

A 2200 kg truck has put its front bumper against the rear bumper of a 2400 kg SUV to give it a push. With the engine at full pow

er and good tires on good pavement, the maximum forward force on the truck is 18,000 N.
a. What is the maximum possible acceleration the truck can give the SUV?
b. At this acceleration, what is the force of the SUV's bumper on the truck's bumper?
Physics
1 answer:
leonid [27]2 years ago
7 0

Answer:

a) The maximum possible acceleration the truck can give the SUV is 7.5 meters per second squared

b) The force of the SUV's bumper on the truck's bumper is 18000 newtons

Explanation:

a) By Newton's second law we can find the relation between force and acceleration of the SUV:

F=ma

With F the maximum force the truck applies to the SUV, m the mass of the SUV and a the acceleration of the SUV; solving for a:

a=\frac{F}{m}=\frac{18000}{2400}\approx7.5\,\frac{m}{s^{2}}

b) Because at this acceleration the truck's bumper makes a force of 18000 N on the SUV’s bumper by Third Newton’s law the force of the SUV’s bumper on the truck’s bumper is 18000 N too because they are action-reaction force pairs.

You might be interested in
Carts A and B are identical and are moving toward each other on a track. The speed of cart A is v, while the speed of cart B is
borishaifa [10]

Answer: k= \frac{5mv^{2} }{2}

Explanation:

Recall that the formula for kinetic energy is given below as

k = \frac{mv^{2} }{2}

where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)

For cart A

m_{a} = mass of cart A

v_{a} = v = velocity of cart A

K.E_{a} = kinetic energy of cart A

hence, K.E_{a} = \frac{m_{a}v^{2}  }{2}

For cart B

m_{b} = mass of cart B

v_{b} = 2v = velocity of cart B

K.E_{b} = kinetic energy of cart B

hence, K.E_{b} = \frac{m_{b}(2v^{2}) }{2} = 2m_{b} v^{2}

from the question, both cart are identical which implies they have the same mass i.e m_{a} = m_{b} = m which implies that

K.E_{a}= \frac{mv^{2} }{2} and K.E_{b}  =2mv^{2}

The total kinetic energy K is the sum of cart A and cart B kinetic energy

K=K.E_{a} + K.E_{b}

K=\frac{mv^{2} }{2} + 2mv^{2}

hence

K=\frac{5mv^{2} }{2}

6 0
2 years ago
If a 3-kg rabbit's leg muscles act as imperfectly elastic springs, how much energy will they hold if the rabbit lands from a hei
DiKsa [7]

Answer;

- 15 J

Explanation;

-Potential energy is defined as mechanical energy, stored energy, or energy caused by its position.

-For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m /s² at the surface of the earth) and h is the height in meters.

Potential energy of the rabbit at the peak of its height is

PE = (3)(10)(0.5) = 15 J

(around 14.7 but because energy is lost, it is less than that)

3 0
2 years ago
Read 2 more answers
Two identical objects A and B fall from rest from different heights to the ground. If object B takes twice as long as A to reach
aivan3 [116]
I believe this ratio is 4:1 due to the inverse square law
4 0
2 years ago
Read 2 more answers
If the envelope and gondola have a total mass of 4300 kg, what is the maximum cargo load when the blimp flies at a sea-level loc
geniusboy [140]

Complete question:

The classic Goodyear blimp is essentially a helium balloon— a big one, containing 5700 m³ of helium. If the envelope and gondola have a total mass of 4300 kg, what is the maximum cargo load when the blimp flies at a sea-level location? Assume an air temperature of 20°C.

Answer:

52.4 kN

Explanation:

The helium at 20°C has a density of 0.183 kg/m³, and the cargo load is the weight of the system, which consists of the envelope, the gondola, and the helium.

The helium mass is the volume multiplied by the density, thus:

mHe = 5700 * 0.183 = 1043.1 kg

The total mass is then 5343.1 kg. The weight is the mass multiplied by the gravity acceleration (9.8 m/s²), so:

W = 5343.1*9.8

W = 53362.38 N

W = 52.4 kN

5 0
2 years ago
Read 2 more answers
Jenny and Alyssa are members of the cross-country team. On a training run, Jenny starts off and runs at a constant 3.8 m/s. Alys
guapka [62]

Answer:

285 seconds

Explanation:

Jenny speed is 3.8 m/s

Alyssa speed in 4.0 m/s

Alyssa starts after 15 seconds

Find the distance covered by Jenny, when Alyssa starts

Distance=Speed*time

Distance covered by Jenny in 15 seconds= 3.8×15=57m

Relative speed of the two members heading same direction will be;

4.0m/s-3.8m/s=0.2m/s

To find the time Alyssa catch up with Jenny you divide the distance to be covered by Alyssa by the relative speed of the two

Distance=57m, relative speed=0.2m/s  t=57/0.2 =285 seconds

=4.75 minutes

5 0
2 years ago
Read 2 more answers
Other questions:
  • A receptor that contains many mechanically-gated ion channels would function BEST as a ____________.
    10·1 answer
  • The starter armature is rubbing on the field coils. technician a says the bushings need to be replaced. technician b says the br
    13·2 answers
  • James gently releases a ball at the top of a slope, but does not push the ball. The ball rolls down the slope. Which force cause
    5·2 answers
  • Carbon dioxide (CO2) gas within a piston–cylinder assembly undergoes a process from a state where p1 = 5 lbf/in.2 , V1 = 2.5 ft3
    9·1 answer
  • The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
    7·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • What form of energy is a bonfire and a bunsen burner?
    11·1 answer
  • A truck is using a hook to tow a car whose mass is one quarter that of the truck. If the force exerted by the truck on the car i
    12·1 answer
  • Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
    11·2 answers
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!