answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
2 years ago
13

When Kevin pulls his cotton shirt off his body, the electrons get transferred from the (shirt or body) to the (shirt or body) .

So, the shirt becomes (positively or negatively) charged and Kevin’s body becomes (positively or negatively) charged.
Physics
1 answer:
Masja [62]2 years ago
6 0
<span>When Kevin pulls his cotton shirt off his body, the electrons get transferred from the shirt (in form of static charges i.e. electrons to the body. So, the shirt becomes positively charged and Kevin’s body becomes negatively charged.

As a result of charge transfer from the shirt to the body, we can hear a crackling sound. or if observed in dark, a sparkle can be seen.</span>
You might be interested in
A 0.242 g sample of potassium is heated in oxygen. The result is 0.292 g of a crystalline compound. What is the formula of this
masha68 [24]

Answer:

Hello there Dude answer is B :D hope it helped mark me brainliest.

8 0
2 years ago
A 1.5 m cylinder of radius 1.1 cm is made of a complicated mixture materials. Its resistivity depends on the distance x from the
Elis [28]

Answer:

a)R = 171μΩ

b)E = 1.7 *10^{-4} V/m

c)R_{2} = 1.16 *10^{-4}Ω

here * stand for multiplication

Explanation:

length of cylinder = 1.5 m

radius of cylinder  =  1.1 cm

resistivity depends on the distance x from the left

p(x)=a+bx^2 ............(i)

using equation

R = \frac{pl}{a}

let dR is the resistance of thickness dx

dR =\frac{p(x)dx}{a}

where p(x) is resistivity  l is length

a is area

\int\limits^R_0 {dR}  =\frac{1}{\pi r^2} \int\limits^L_0 {(a+bx^2)} \, dx  \\.........................(2)

after integration

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}  ...............(3)

it is given p(0) = a = 2.25 * 10 ^{-8}Ωm

p(L) = a + b(L)^2  = 8.5 * 10 ^{-8} Ωm

8.5 * 10 ^{-8} = 2.25 * 10^{-8}+b(1.5)^2\\

(here * stand for multiplication )

on solving we get

b = 2.78* 10^{-8} Ωm

put each value of a  and b and r value in equation 3rd we get

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}

R = 1.71 * 10^{-4}Ω

R = 171μΩ

FOR (b)

for mid point  x = L/2

E = p(x)L

for x = L/2

p(L/2) = a+b(L/2)^2

for given current  I = 1.75 A

so electric field

 

E = \frac{[a+b(L/2)^2]I }{\pi  r^2}

by substitute the values

we get;

E = 1.7 *10^{-4} V/m

(here * stand for multiplication )

c ).

75 cm means length will be half

 that is   x =  L/2

integrate  the second equation with upper limit  L/2  

Let resistance is R_{1}

so after integration we get

R_{1}  =  \frac{[a(L/2) +(b/3)(L^3/8)]}{\pi r^2}

substitute the value of a , b and L we get

R_{1} = 5.47 * 10 ^{-5}Ω

for second half resistance

R_{2} =  R- R_{1}

R_{2}  = 1.7 *10^{-4} -5.47 *10^{-5}

R_{2} = 1.16 *10^{-4}Ω

(here * stand for multiplication )

5 0
2 years ago
When a pendulum is pulled back from its equilibrium position by 10∘, the restoring force is 1.0 N. When it is pulled back to 30∘
jarptica [38.1K]

Answer: B

Explanation: I said B because if you pull something back what is going to be more of a force pulling back or letting it go for a rubier band yes it will have more force if you let it go

5 0
2 years ago
Read 2 more answers
According to a rule-of-thumb. every five seconds between a lightning flash and the following thunder gives the distance to the f
Bond [772]

Answer:

S_{s}=300 m/s

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

Explanation:

In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

\frac{1mi}{5s}*\frac{5280ft}{1mi}*\frac{0.3048m}{1ft}=321.87m/s

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.

The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.

For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

\frac{5s}{1mi}*\frac{1mi}{5280ft}*\frac{1ft}{0.3048m}*\frac{1000m}{1km}=3.11s/km

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

3 0
2 years ago
What is the y component of a vector defined as 12.2m at 81.5°?
sergejj [24]

Answer:

Explanation:

This is a displacement vector since it is defined in terms of distance (meters, to be exact). The way you find the y-component is

V_y=Vsin\theta which says that you multiply the magnitude of the vector (its length) by the sin of the direction (the angle):

V_y=12.2sin(81.5) and get

V_y=12.1 m

3 0
2 years ago
Other questions:
  • Show that a directed multigraph having no isolated vertices has an euler circuit if and only if the graph is weakly connected an
    11·1 answer
  • Monitoring systems may also use ____, which are devices that respond to a stimulus (such as heat, light, or pressure) and genera
    15·1 answer
  • A 20 watt lightbulb uses 20 Joules of energy every second.A person expends 50 watts of energy per stair when climbing up stairs.
    11·1 answer
  • The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
    12·1 answer
  • Two 7.0cm×7.0cm metal electrodes are spaced 1.0 mm apart and connected by wires to the terminals of a 9.0 v battery.
    9·1 answer
  • Energy is observed in two basic forms: potential and kinetic. Which of the following correctly matches these forms with a source
    7·1 answer
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in
    5·1 answer
  • A 0.2-kg steel ball is dropped straight down onto a hard, horizontal floor and bounces straight up. The ball's speed just before
    5·2 answers
  • Water runs through a plumbing with a flow of 0.750m3/s and arrives to every exit of a fountain. At what speed will the water com
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!