answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
2 years ago
7

When a pendulum is pulled back from its equilibrium position by 10∘, the restoring force is 1.0 N. When it is pulled back to 30∘

, the force increases to 2.8 N. If the pendulum is then released from 30∘, will its motion be periodic? If the pendulum is then released from 30, will its motion be periodic?a) No, it will be linear motion.b) No, the motion will be chaotic.c)Yes and it will be exactly harmonic.d)Yes, but it will not be exactly harmonic.
Physics
2 answers:
jarptica [38.1K]2 years ago
5 0

Answer: B

Explanation: I said B because if you pull something back what is going to be more of a force pulling back or letting it go for a rubier band yes it will have more force if you let it go

fenix001 [56]2 years ago
3 0

Answer:

The answer is d) Yes, but it will not be exactly harmonic: the pendulum’s motion will be periodic, but will not be exactly harmonic because the condition for simple harmonic motion is not satisfied when angular displacements become larger. Typically, a pendulum’s motion will exhibit simple harmonic motion if angular displacements are smaller.

You might be interested in
A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
koban [17]
<span>We'll use the momentum-impulse theorem. The x-component of the total momentum in that direction is given by p_(f) = p_(1) + p_(2) + p_(3) = 0.
  So p_(1x) = m1v1 = 0.2 * 2 = 0.4 Also p_(2x) = m2v2 = 0 and p_(3x) = m3v3 = 0.1 *v3 where v3 is unknown speed and m3 is the mass of the third particle with the unknown speed
 Similarly, the 235g particle, y-component of the total momentum in that direction is given by p_(fy) = p_(1y) + p_(2y) + p_(3y) = 0.
 So p_(1y) = 0, p_(2y) = m2v2 = 0.235 * 1.5 = 0.3525 and p_(3y) = m3v3 = 0.1 * v3 where m3 is third particle mass.
  So p_(fx) = p_(1x) + p_(2x) + p_(3x) = 0.4 + 0.1v3; v3 = 0.4/-0.1 = - 4
 Also p_(fy) = 0.3525 + 0.1v3; v3 = - 0.3525/0.1 = -3.525
  So v_3x = -4 and v_3y = 3.525.
 The speed is their resultant = âš (-4)^2 + (-3.525)^2 = 5.335</span>
4 0
2 years ago
Read 2 more answers
In a distant solar system, a giant planet has
sergeinik [125]

Answer:

mass of the planet: 5.9\,10^{26}\,kg

Explanation:

When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

m\frac{v^2}{R}=G\frac{M\,m}{R^2}

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

m\frac{v^2}{R}=G\frac{M\,m}{R^2}\\v^2=G\frac{M}{R}

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.

We know the orbital radius R (5.32\,10^5\,km=5.32\,10^8\,m, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.

We know that the moon makes a full circumference (2\,\pi\,R) in 388800 seconds, therefore its tangential velocity is:

v=\frac{2\,\pi\,5.32\,10^8}{388800} \frac{m}{s} \\v=8.6\,10^3\,\frac{m}{s}

where we rounded the velocity to one decimal.

Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.

Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

v^2=G\frac{M}{R}\\M=\frac{v^2\,R}{G} \\M=\frac{(8.6\,10^3)^2\,5.32\,10^8}{6.67\,10^{-11}}kg\\M=5.9\,10^{26}\,kg

8 0
2 years ago
While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
____ [38]

As per the question Bob drops the bag full with feathers from the top of the building.

The mass of the bag(m)= 1.0 lb

Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.

Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2


Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s

Hence time t= 1.5 s

From equation of kinematics we know that -

                S=ut + 0.5at^2     [ here S is the distance travelled]

For motion under free fall initial velocity (u)=0.

Hence   S= 0×1.5+{0.5×(-9.8)×(1.5)^2}

           ⇒ -S =0-11.025 m

            ⇒ S= 11.025 m

                   =11 m

Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .


Hence the correct option is B.

               

3 0
2 years ago
Read 2 more answers
A nonrelativistic electron is accelerated from rest through a potential difference. After acceleration the electron has a de Bro
aleksley [76]

Answer:

Potential difference though which the electron was accelerated is 2.67\times 10^{-6}\ uV\  .

Explanation:

Given :

De Broglie wavelength , \lambda=750\ nm.

Plank's constant , h=6.626\times 10^{-34}\ J.s \ .

Charge of electron , e=-1.6\times 10^{-19}\ C.

Mass of electron , m=9.11\times 10^{-31}\ kg.m=9.11\times 10^{-31}\ kg.

We know , according to de broglie equation :

\lambda=\dfrac{h}{mv}\\\\ v=\dfrac{h}{m\lambda}\\\\v=\dfrac{6.626\times 10^{-34}\ J.s \ }{9.11\times 10^{-31}\ kg\times 750\times 10^{-9}\ m }= 969.78\ m/s .

Now , we know potential energy applied on electron will be equal to its kinetic energy .

Therefore ,

qV=\dfrac{mv^2}{2}\\\\ V=\dfrac{mv^2}{2q}

Putting all values in above equation we get ,

V=2.67\times 10^{-6}\ uV .

Hence , this is the required solution.

5 0
2 years ago
A roadway for stunt drivers is designed for racecars moving at a speed of 40 m/s. A curved section of the roadway is a circular
Fynjy0 [20]

Answer:

Bank angle = 35.34o

Explanation:

Since the road is frictionless,

Tan (bank angle) = V^2/r*g

Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2

Tan ( bank angle) = 40^2/(230*9.81)

Tan (bank angle) = 0.7091

Bank angle = tan inverse (0.7091)

Bank angle = 35.34o

3 0
2 years ago
Other questions:
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
    7·1 answer
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • In the following equations, the distance x is in meters, the time tin seconds. and the velocity v is in meters per second. whata
    15·2 answers
  • The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma
    10·1 answer
  • Al llegar a detenerse, un automóvil deja marcas de derrape de 92m de largo sobre una autopista. Si se supone una desaceleración
    15·1 answer
  • In which case does viscosity play a dominant role? Case A: a typical bacterium (size ~ 1 mm1 mm and velocity ~ 20 mm/s20 mm/s) i
    13·1 answer
  • Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the sp
    8·1 answer
  • 15 PLEASE HELP
    7·1 answer
  • Pool girl Paula has a problem. She has dropped two blocks into her pool. One, made of wood, floats on the surface. The other, ma
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!