Answer:
A. 5.4 * 10^(-4) m
B. 500V
Explanation:
A. Electric potential, V is given as:
V = kq/r
This means that radius, r is
r = kq/V
r = (9 * 10^9 * 30 * 10^(-12))/500
r = (270 * 10^(-3))/500
r = 5.4 * 10^(-4) m
B. Now the radius is doubled and the charge is doubled,
V = (9 * 10^9 * 2 * 30 * 10^(-12))/(2 * 5.4 * 10^(-4) * 2)
V = 500V
Answer:
Thermal Power = 460W
Explanation:
From Stephan-Boltzmann Law Formula;
P = єσT⁴A
Where,
P = Radiation energy
σ = Stefan-Boltzmann Constant
T = absolute temperature in Kelvin
є = Emissivity of the material.
A=Area of the emitting body
Now, σ = 5.67 x 10^(-8)
є = 0.6
Temperature = 30°C and coverting to kelvin = 30 + 273 = 303K
Area ; since we are to consider the sides of the human body as 2m and 0.8m,thus area = 2 x 0.8 = 1.6
Thus thermal power = 0.6 x 5.67 x 10^(-8) x303⁴ x 1.6 = 458. 8W
Normally, we approximate to the nearest 10W. Thus, thermal power is approximately 460W
Answer:
I believe the answer for this question is D
Explanation:
I hope this helps and is correct
It means you can do 550 Newton Meters of work every second. Power is the rate of doing work, I hope this helps
Answer:
(a) A = 0.650 m
(b) f = 1.3368 Hz
(c) E = 17.1416 J
(d) K = 11.8835 J
U = 5.2581 J
Explanation:
Given
m = 1.15 kg
x = 0.650 cos (8.40t)
(a) the amplitude,
A = 0.650 m
(b) the frequency,
if we know that
ω = 2πf = 8.40 ⇒ f = 8.40 / (2π)
⇒ f = 1.3368 Hz
(c) the total energy,
we use the formula
E = m*ω²*A² / 2
⇒ E = (1.15)(8.40)²(0.650)² / 2
⇒ E = 17.1416 J
(d) the kinetic energy and potential energy when x = 0.360 m.
We use the formulas
K = (1/2)*m*ω²*(A² - x²) (the kinetic energy)
and
U = (1/2)*m*ω²*x² (the potential energy)
then
K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)
⇒ K = 11.8835 J
U = (1/2)*(1.15)*(8.40)²*(0.360)²
⇒ U = 5.2581 J