answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
2 years ago
15

A 1.47-newton baseball is dropped from a height of 10.0 meters and falls through the air to the ground. The kinetic energy of th

e ball is 12.0 joules the instant before the ball strikes the ground. The maximum amount of mechanical energy converted to internal energy during the fall is_________.
Physics
2 answers:
vagabundo [1.1K]2 years ago
8 0

Answer:

The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules

Explanation:

Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules

Kinetic Energy (KE) = 12 joules

Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules

Vedmedyk [2.9K]2 years ago
7 0

Answer:

ΔE<em>internal </em>= - 2.7 J

Explanation:

Given

W = m*g = 1.47 N

h<em>initial</em> = 10.0 m

K<em>final</em> = 12.0 J

We can apply

ΔE = ΔE<em>internal</em>

then

ΔE = (K<em>final</em> + U<em>final</em>) - (K<em>initial</em> + U<em>initial</em>)

⇒   ΔE = (K<em>final</em> + 0 J) - (0 J + U<em>initial</em>) = K<em>final </em>- U<em>initial</em>

⇒   ΔE = K<em>final</em> - (W*h<em>final</em>) = 12 J  - (1.47 N*10.0 m)

⇒   ΔE = 12 J - 14.7 J = - 2.7 J

then

ΔE<em>internal </em>= - 2.7 J

You might be interested in
A plane wall with constant properties is initially at a uniform temperature To. Suddenly, the surface at x = L is exposed to a c
Rzqust [24]

Answer:

The distribution is as depicted in the attached figure.

Explanation:

From the given data

  • The plane wall is initially with constant properties is initially at a uniform temperature, To.
  • Suddenly the surface x=L is exposed to convection process such that T∞>To.
  • The other surface x=0 is maintained at To
  • Uniform volumetric heating q' such that the steady state temperature exceeds T∞.

Assumptions which are valid are

  1. There is only conduction in 1-D.
  2. The system bears constant properties.
  3. The volumetric heat generation is uniform

From the given data, the condition are as follows

<u>Initial Condition</u>

At t≤0

T(x,0)=T_o

This indicates that initially the temperature distribution was independent of x and is indicated as a straight line.

<u>Boundary Conditions</u>

<u>At x=0</u>

<u />T(0,t)=T_o<u />

This indicates that the temperature on the x=0 plane will be equal to To which will rise further due to the volumetric heat generation.

<u>At x=L</u>

<u />-k\frac{\partial T}{\partial x}]_{x=L}=h[T(L,t)-T_{\infty}]<u />

This indicates that at the time t, the rate of conduction and the rate of convection will be equal at x=L.

The temperature distribution along with the schematics are given in the attached figure.

Further the heat flux is inferred from the temperature distribution using the Fourier law and is also as in the attached figure.

It is important to note that as T(x,∞)>T∞ and T∞>To thus the heat on both the boundaries will flow away from the wall.

3 0
2 years ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
A 1000 kg roller coaster begins on a 10 m tall hill with an initial velocity of 6m/s and travels down before traveling up a seco
balu736 [363]

Answer:

10.6 meters.

Explanation:

We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:

\frac{1}{2}mv_i^2+mgh_i-1700j=\frac{1}{2}mv_f^2+mgh_f

In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.

Now let us put in the numerical values in the above equation.

m=100kg

h_i=10m

v_i= 6m/s

v_f=4,6m/s

and solve for h_f

h_f= \frac{\frac{1}{2}mv_i^2+mgh_i-1700j-\frac{1}{2}mv_f^2}{mg} =\boxed{ 10.6\:meters}

Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.

6 0
2 years ago
Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice cream scoops hold about 2 ounces. However, there is some v
DaniilM [7]

Answer: See attachment below

Explanation:

5 0
2 years ago
The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration from gravity being the
Diano4ka-milaya [45]

Answer:

<em>The object could fall from six times the original height and still be safe</em>

Explanation:

<u>Free Falling</u>

When an object is released from rest in free air (no friction), the motion is completely dependant on the acceleration of gravity g.

If we drop an object of mass m near the Earth surface from a height h, it has initial mechanical energy of

U=m.g.h

When the object strikes the ground, all the mechanical energy (only potential energy) becomes into kinetic energy

\displaystyle K=\frac{1}{2}m.v^2

Where v is the speed just before hitting the ground

If we know the speed v is safe for the integrity of the object, then we can know the height it was dropped from

\displaystyle m.g.h=\frac{1}{2}m.v^2

Solving for h

\displaystyle h=\frac{m.v^2}{2mg}=\frac{v^2}{2g}

If the drop had occurred in the Moon, then

\displaystyle h_M=\frac{v_M^2}{2g_M}

Where hM, vM and gM are the corresponding parameters on the Moon. We know v is the safe hitting speed and the gravitational acceleration on the Moon is g_M=1/6 g

\displaystyle h_M=\frac{v^2}{2\frac{1}{6}g}

\displaystyle h_M=6\frac{v^2}{2g}=6h

This means the object could fall from six times the original height and still be safe

6 0
2 years ago
Other questions:
  • Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
    11·2 answers
  • A 15.7-g aluminum block is warmed to 53.2 °c and plunged into an insulated beaker containing 32.5 g of water initially at 24.5 °
    13·2 answers
  • You go to an amusement park with your friend Betty, who wants to ride the 70-m-diameter Ferris wheel. She starts the ride at the
    6·1 answer
  • Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
    11·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • Find the net electric force that the two charges would exert on an electron placed at point on the xx-axis at xx = 0.200 mm. Exp
    15·1 answer
  • Now suppose the initial velocity of the train is 4 m/s and the hill is 4 meters tall. If the train has a mass of 30000 kg, what
    6·1 answer
  • The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
    7·1 answer
  • What is the speed of light (in m/s) in air? (Enter your answer to at least four significant figures. Assume the speed of light i
    5·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!