First, find the needed acceleration needed for the car to stop from its initial velocity given the distance. This is calculated through the equation,
2ad = Vf² - Vi²
where a and d are acceleration and distance, respectively. Vf and Vi are final and initial velocities, respectively. Substituting the known values,
2(a)(35 m) = (0 m/s)² - ((65 km/h) x (1000 m/ 1 km) x (1 hr / 3600 s))²
The value of acceleration is -4.66 m/s².
The force needed to stop the car is the product of the mass and the acceleration. The operations gives us an answer of -4,660 N. We take the positive value, 4,660 N.
The answer would be negative charge because +, and - dont like each other so they retract from each other.
Answer
Given,
Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.
refractive index of water, n_a = 1.33
refractive index of glass, n_g = 1.52
When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.
Answer:
<h2>13N</h2>
Explanation:
<em>Kindly see attached file for your reference</em>
Step one:
given data
the horizontal component of the force= 12N
the vertical component of the force= 5N
The dashed arrow represents the hypotenuse of the triangle, hence the resultant of the force system.
By implication of this, we will use the Pythagoras theorem to solve for the resultant force
Step two:
