Answer:
The y-value of the line in the xy-plane where the total magnetic field is zero 
Explanation:
From the question we are told that
The distance of wire one from two along the y-axis is y = 0.340 m
The current on the first wire is 
The force per unit length on each wire is 
Generally the force per unit length is mathematically represented as

=> 
Where
is the permeability of free space with a constant value of 
substituting values

=>
Let U denote the line in the xy-plane where the total magnetic field is zero
So
So the force per unit length of wire 2 from line U is equal to the force per unit length of wire 1 from line (y - U)
So

substituting values



The appropriate response is accretion disk. It is a structure (regularly a circumstellar circle) shaped by diffused material in orbital movement around a monstrous focal body. The focal body is regularly a star. Gravity makes the material in the plate winding internal towards the focal body.
Answer:
a)693.821N/m
b)17.5g
Explanation:
We the Period T we can find the constant k,
That is

squaring on both sides,

where,
M=hanging mass, m = spring mass,
k =spring constant
T =time period
a) So for the equation we can compare, that is,

the hanging mass M is x here, so comparing the equation we know that

b) In order to find the mass of the spring we make similar process, so comparing,

First, we write the SI prefixed. The SI unit for distance is meters.
Kilo = 10³
Mega = 10⁶
Giga = 10⁹
Terra = 10¹²
Because our value has ten to the power of 11, we will use the closest and lowest power prefix, which is giga.
1.5 x 10¹¹ / 10⁹
= 1.5 x 10² Gm or 150 Gm
Writing in kilometers, we simply repeat the procedure except we divide by 10³ this time.
1.5 x 10¹¹ / 10³
= 1.5 x 10⁸ km
Answer:
The acceleration you can get with that engine in your car is around 70,56
or 7,26
using 1500kg of mass or 3306 pounds
Explanation:
Using the equation of the force that is:

So, you notice that you know the force that give the engine, so changing the equation and using a mass of a car in 1500 kg or 3306 pounds


<em> Note: N or Newton units are:
</em>

Also in pounds you can compared

Note: lf in force units are: 
