Answer:600 miles, 12
Explanation: The movement described in the question exhibits that of a polygon. Exhibiting a constant distance and angle with only varying direction until the starting point is reached.
The sum of exterior angles of a polygon = 360 degrees.
Exterior angle of a polygon = (360 ÷ number of sides)
Therefore,
Number of sides = 360 ÷ exterior angle
Exterior angle = 30 degrees
Hence,
Number of sides = 360 ÷ 30 = 12 sides
Since distance traveled of 50 miles is the same for each displacement ;
Total displacement = distance traveled * number of sides
Total displacement = 50 * 12 = 600 miles.
Answer:
Ionizing radiation is radiation with enough energy so that during an interaction with an atom, it can remove tightly bound electrons from the orbit of an atom, causing the atom to become charged or ionized. ... Forms of electromagnetic radiation.
(from google)
thank you :)
Answer:
The magnitude of the average force exerted on the water by the blade is 960 N.
Explanation:
Given that,
The mass of water per second that strikes the blade is, 
Initial speed of the oncoming stream, u = 16 m/s
Final speed of the outgoing water stream, v = -16 m/s
We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :



F = -960 N
So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.
Answer:
1.75 m/s
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(50 g) (15 m/s) + (600 g) (0 m/s) = (50 g) (-6 m/s) + (600 g) v
v = 1.75 m/s