answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
2 years ago
9

A body covers a semicircle of radius 7cm in 5s .find its linear speed

Physics
1 answer:
choli [55]2 years ago
8 0

Ok so we are given the radius of 7cm and time of 5 seconds.

From the data we got we can calculate speed, frequency, perimeter and area of the semicircle.

Let's start with perimeter.

We know that perimeter of circle is 2\pi r so the perimeter of semicircle is \dfrac{2\pi r}{2} or simply \pi r

So the perimeter is equal to:

\pi r=\pi\cdot7\approx\boxed{22cm}

So this is the length of a curve or let's say the distance.

Now let's look at the linear speed s=\dfrac{d}{t} where d is distance and t time.

We know the distance and we know the time.

So let's calculate it.

s=\dfrac{d}{t}=\dfrac{22}{5}=\boxed{4.4\dfrac{cm}{s}}

Hope this helps.

r3t40

You might be interested in
A cylindrical wire has a resistance R and resistivity ρ. If its length and diameter are BOTH cut in half, what will be its resis
snow_lady [41]

Answer:

The resistance will be 2×R

Explanation:

We note that the resistivity of a cylindrical wire is given by the following relation;

\rho = \frac{RA}{L}

Where:

ρ = Resistivity of the wire

R = The wire resistance

A = Cross sectional area of the wire = π·D²/4

L = Length  of the wire

Rearranging, we have;

R= \frac{\rho L}{A}

If the length and the diameter are both cut in half, we have;

L₂ = L/2

A₂ =π·D₂²/4 = \pi \cdot \left (\frac{D}{2}   \right )^{2} \times \frac{1}{4}  = \pi \cdot \frac{D^{2}}{16} = A/4

Therefore, the new resistance, R₂ can be expressed as follows;

R_2= \frac{\rho \frac{L}{2} }{\frac{A}{4} } = \rho \frac{L}{2} \times \frac{4}{A} = 2 \times  \frac{\rho L}{A}

Hence, the new resistance R₂ =  2×R, that is the resistance will be doubled.

8 0
2 years ago
Force X has a magnitude of 1260 ​pounds, and Force Y has a magnitude of 1530 pounds. They act on a single point at an angle of 4
weeeeeb [17]

Answer:

Fe= 2579.68 P

α= 24.8°

Explanation:

Look at the attached graphic

we take the forces acting on the x-y plane and applied at the origin of coordinates

FX = 1260 P , horizontal (-x)

FY = 1530  P , forming 45° with positive x axis

x-y components FY

FYx= - 1530*cos(45)° = - 1081.87 P

FYy= -  1530*sin(45)° = - 1081.87 P

Calculation of the components of net force (Fn)

Fnx= FX + FYx

Fnx= -1260 P -1081.87 P

Fnx= -2341.87 P

Fny=FYy

Fny= -1081.87 P

Calculation of the components of equilibrant force (Fe)

the x-y components of the  equilibrant force are equal in magnitude but in the opposite direction to the net force components:

Fnx= -2341.87 P, then, Fex= +2341.87 P

Fny=  -1081.87 P P, then, Fex= +1081.87 P

Magnitude of the equilibrant (Fe)

F_{n} = \sqrt{(F_{nx})^{2} +(F_{ny})^{2}  }

F_{e} =\sqrt{(2341.87)^{2}+(1081.87)^{2}  }

Fe= 2579.68 P

Calculation of the direction of  equilibrant force (α)

\alpha =tan^{-1} (\frac{F_{ny} }{F_{nx} } )

\alpha =tan^{-1} (\frac{1081.87 }{2341.87} )

α= 24.8°

Look at the attached graphic

6 0
2 years ago
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
2 years ago
Four electrons are located at the corners of a square 10.0 nm on a side, with an alpha particle at its midpoint. How much work i
Elis [28]

Four electrons are placed at the corner of a square

So we will first find the electrostatic potential at the center of the square

So here it is given as

V = 4\frac{kQ}{r}

here

r = distance of corner of the square from it center

r = \frac{a}{\sqrt2}

r = \frac{10nm}{\sqrt2} = 7.07 nm

Q = e = -1.6 * 10^{-19} C

now the net potential is given as

V = \frac{4 * 9*10^9 * (-1.6 * 10^{-19})}{7.07 * 10^{-9}}

V = 0.815 V

now potential energy of alpha particle at this position

U_i = qV = 2*1.6 * 10^{-19} * (-0.815) = -2.6 * 10^{-19} J

Now at the mid point of one of the side

Electrostatic potential is given as

V = 2\frac{kQ}{r_1} + 2\frac{kQ}{r_2}

here we know that

r_1 = \frac{a}{2} = 5 nm

r_2 = \sqrt{(a/2)^2 + a^2} = \frac{\sqrt5 a}{2}

r_2 = 11.2 nm

now potential is given as

V = 2\frac{9 * 10^9 * (-1.6 * 10^{-19})}{5 * 10^{-9}} + 2\frac{9*10^9 * (-1.6 * 10^{-19})}{11.2 * 10^{-9}}

V = -0.576 - 0.257 = -0.833 V

now final potential energy is given as

U_f = q*V = 2*1.6 * 10^{-19}* (-0.833) = -2.67 * 10^{-19} J

Now work done in this process is given as

W = U_f - U_i

W = (-0.267 * 10^{-19}) - (-0.26 * 10^{-19}}

W = -7 * 10^{-22} J

8 0
2 years ago
The statements below are all true. Some of them represent important reasons why the giant impact hypothesis for the Moon’s forma
Molodets [167]

Answer:

the order of importance must be     b e a f c

Explanation:

Modern theories indicate that the moon was formed by the collision of a bad plant with the Earth during its initial cooling period, due to which part of the earth's material was volatilized and as a ring of remains that eventually consolidated in Moon.

Based on the aforementioned, let's analyze the statements in order of importance

b) True. Since the moon is material evaporated from Earth, its compassion is similar

e) True. If the moon is material volatilized from the earth it must train a finite receding speed

a) True. The solar system was full of small bodies in erratic orbits that wander between and with larger bodies

f) False. The moon's rotation and translation are equal has no relation to its formation phase

c) false. The amount of vaporized material on the moon is large

Therefore, the order of importance must be

         b e a f c

5 0
2 years ago
Other questions:
  • What is true of an object pulled inward in an electric field?
    9·1 answer
  • Calculate the acceleration of the body of mass 3kg on which a force of 42N has been applied for 5s
    6·1 answer
  • Estimate the change in the equilibrium melting point of copper caused by a change in pressure of 10 kbar. The molar volume of co
    14·1 answer
  • 550 J of work must be done to compress a gas to half its initial volume at constant temperature. How much work must be done to c
    7·1 answer
  • There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
    8·1 answer
  • You must determine the length of a long, thin wire that is suspended from the ceiling in the atrium of a tall building. A 2.00-c
    6·1 answer
  • At what location in the refrigerator is the most thermal energy removed?
    12·1 answer
  • A Honda Civic and an 18 wheeler approach a right angle intersection and then collide. After the collision, they become interlock
    10·1 answer
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
  • A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of 3.30 m/s2. What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!