The magnetic field strength in a coil is directly proportional to the number of turns, or loops, in the coil.
Therefore, when there are four loops instead of one, the magnetic field strength has increased four times, making it harder to push the magnet in.
<span>The distance covered by the tectonic plate, in meters, is
</span>

<span>
The time taken for the tectonic plate to cover this distance is equal to
</span>

<span>
Therefore, the average velocity of the tectonic plate is the ratio between the distance covered and the time taken:
</span>

<span>
</span>
Given:
rod of circular cross section is subjected to uniaxial tension.
Length, L=1500 mm
radius, r = 10 mm
E=2*10^5 N/mm^2
Force, F=20 kN = 20,000 N
[note: newton (unit) in abbreviation is written in upper case, as in N ]
From given above, area of cross section = π r^2 = 100 π =314 mm^2
(i) Stress,
σ
=force/area
= 20000 N / 314 mm^2
= 6366.2 N/mm^2
= 6370 N/mm^2 (to 3 significant figures)
(ii) Strain
ε
= ratio of extension / original length
= σ / E
= 6366.2 /(2*10^5)
= 0.03183
= 0.0318 (to three significant figures)
(iii) elongation
= ε * L
= 0.03183*1500 mm
= 47.746 mm
= 47.7 mm (to three significant figures)
Answer:
No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight