Answer:
468449163762.0812 W
Explanation:
m = Mass = 
V = Volume =
r = Distance of sphere from isotropic point source of light = 0.5 m
R = Radius of sphere = 2 mm
= Density = 19 g/cm³
c = Speed of light = 
A = Area = 
I = Intensity = 
g = Acceleration due to gravity = 9.81 m/s²
Force due to radiation is given by

According to the question

The power required of the light source is 468449163762.0812 W
Answer:
People can capture geothermal energy through: Geothermal power plants, which use heat from deep inside the Earth to generate steam to make electricity. Geothermal heat pumps, which tap into heat close to the Earth's surface to heat water or provide heat for buildings
When the weather is cold, the water or refrigerant heats up as it travels through the part of the loop that's buried underground. Once it gets back above ground, the warmed water or refrigerant transfers heat into the building. The water or refrigerant cools down after its heat is transferred.
Answer:

Explanation:
given,
magnetic field strength = 1.40 ✕ 10⁻³ T
frequency of oscillation = 60 Hz
diameter of RBC = 7.5 μm
EMF = ?





maximum emf that can generate around the perimeter of the cell 
Answer:
A) 12.08 m/s
B) 19.39 m/s
Explanation:
A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:
mg(sinθ) – F_k = ma
Where; F_k is frictional force due to kinetic friction given by the formula;
F_k = (μ_k) × F_n
F_n is normal force given by mgcosθ
Thus;
F_k = μ_k(mg cosθ)
We now have;
mg(sinθ) – μ_k(mg cosθ) = ma
Dividing through by m to get;
g(sinθ) – μ_k(g cosθ) = a
a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)
a = -3.71 m/s²
We are told that distance d = 24.0 m and v_o = 18 m/s
Using newton's 3rd equation of motion, we have;
v = √(v_o² + 2ad)
v = √(18² + (2 × -3.71 × 24))
v = 12.08 m/s
B) Now, μ_k = 0.10
Thus;
a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)
a = 1.08 m/s²
Using newton's 3rd equation of motion, we have;
v = √(v_o + 2ad)
v = √(18² + (2 × 1.08 × 24))
v = 19.39 m/s