Answer: Thermal comductivity (K) is 3.964x 10 ^-3 W/m.k
Explanation:
Thermal comductivity K = QL/A∆T
Q= Amount of heat transferred through the material in watts = 75W
L= Distance between two isothermal planes = 0.740mm
A= Area of the surface in square metres = 2m^2
∆T= Temperature change = (37-30) °C.
Solving this : K =( 75 x 0.740 x 10^-3)/ 2 x (37-30)
K = 3.964x 10 ^-3 W/m.k
Charges build up when you have dry air and friction ,the heat to clothes which dry it out and causes friction.
Answer:
q2 must also be doubled
r may also be halved
Explanation:
According to Coulumbs law
F= K q1 q2/r^2
If q1 is doubled, we must necessarily double q2 and r may also be halved in order to maintain F at the same value. Once the value of F is thus kept constant and E is also constant, the product FE must remain constant.
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
1.10 m/s
Explanation:
Linear speed is given by
Kinetic energy is given by
Potential energy
PE= mgh
From the law of conservation of energy, KE=PE hence
where m is mass, I is moment of inertia,
is angular velocity, g is acceleration due to gravity and h is height
Substituting m2-m1 for m and 0.5l for h,
for
we obtain
and making v the subject
For the rod, moment of inertia
and for sphere
hence substituting 0.5L for R then
For the sphere on the left hand side, moment of inertia I
while for the sphere on right hand side,
The total moment of inertia is therefore given by adding
Substituting
for I in the equation
Then we obtain
This is the expression of linear speed. Substituting values given we get