Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:

Explanation:
First calculate the mass of the asteroid. To do so, you need to find the volume and know the density of iron.
If r = d/2 = 645ft, then:


So


Once you know both masses, you can calculate the force using Newton's universal law of gravitation:

Where G is the gravitational constant:


Answer:
Your answer would be
A person 40 cm- blows into the left end of the pipe to eject the marshmallow from the right end. ... A strain of sound waves is propagated along an organ pipe and gets reflected from an. play · like-icon ... The velocity of sound in air is 340ms^(-1). ... The two pipes are submerged in sea water, arranged as shown in figure. Pipe.Explanation:
I belive this is the answer sorry if im wrong!