answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
2 years ago
10

an ice skater is moving at a speed of 2 mi/hr when she slams into a wall 0.05 hours later. what is her acceleration?

Physics
2 answers:
Firdavs [7]2 years ago
7 0

Answer:

0.00497m/s²

Explanation:

Acceleration is defined as the change in velocity of a body with respect to time. Mathematically,

Acceleration = change in velocity/time

Given velocity = 2miles/hour

Converting mi/hr to m/s,

1mi/hr = 0.447m/s

2mi/hr = 2×0.447

= 0.894m/s

Time taken to slam into a wall = 0.05hours

Converting this to seconds will give;

0.05×60×60

= 180seconds

Acceleration = 0.894/180

Acceleration = 0.00497m/s²

nikklg [1K]2 years ago
6 0
v_{f} = v_{0}+at
at v_{f}=0
v_{0}=at
-2=0.05a
a= \frac{-2}{0.05} =-40mi/hr

Hope this helps.
You might be interested in
To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V
aleksley [76]

Answer:

The maximum energy stored in the combination is 0.0466Joules

Explanation:

The question is incomplete. Here is the complete question.

Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Energy stored in a capacitor is expressed as E = 1/2CtV² where

Ct is the total effective capacitance

V is the supply voltage

Since the capacitors are connected in series.

1/Ct = 1/C1+1/C2+1/C3

Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF

1/Ct = 1/11.7 + 1/21.0 + 1/28.8

1/Ct = 0.0855+0.0476+0.0347

1/Ct = 0.1678

Ct = 1/0.1678

Ct = 5.96μF

Ct = 5.96×10^-6F

Since V = 125V

E = 1/2(5.96×10^-6)(125)²

E = 0.0466Joules

8 0
2 years ago
Assume you are driving 20 mph on a straight road. Also, assume that at a speed of 20 miles per hour, it takes 100 feet to stop.
Viefleur [7K]

Answer:900  feet

Explanation:

Given

Velocity \left ( V_1\right )=20 mph\approx 29.334 ft/s

it take 100 feet to stop

Using Equation of motion

v^2-u^2=2as

where

v,u=Final and initial velocity

a=acceleration

s=distance moved

0-\left ( 29.334\right )^2=2\left (-a\right )\left ( 100\right )

a=\frac{29.334^2}{2\times 100}=4.302 ft/s^2

When velocity is 60 mph\approx 88.002 ft/s

v^2-u^2=2as

0-\left ( 88.002\right )^2=2\left ( -4.302\right )\left ( s\right )

s=900.08 feet

8 0
2 years ago
Read 2 more answers
Consider two circular metal wire loops each carrying the same current I as shown below. In what r... Consider two circular metal
NeX [460]

Answer:

1) The magnetic field outside the loop is zero.

In region III the magnetic fields due to the two wire loops point in the opposite direction andhence cancel each other. Therefore the magnetic field is zero in region I, III and V

The diagram is attached

6 0
2 years ago
In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
Pie

Answer:

A) Q_a=74256\ J

B) Q=93562560\ J

Explanation:

Given:

  • temperature of air, T_a=-19+273=254\ K
  • temperature of lungs, T_l=37+273=310\ K
  • specific Heat exchanged from the lungs , c_l=0.47\ J.kg^{-1}.K^{-1}
  • specific heat of air, c_a=1020\ J.kg^{-1}.K^{-1}
  • mass of 1 L air, m'=1.3\ kg
  • breath rate, b=21\ breath.min^{-1}

A)

Now,

amount of heat needed to warm the air of lungs to the body temperature:

Q_a=m'.c_a.\Delta T

Q_a=1.3\times1020\times (310-254)

Q_a=74256\ J

B)

Amount of heat lost per hour:

<u>No. of breaths per hour:</u>

B=b.60

B=21\times 60

B=1260

<u>Now the total loss of energy in 1 hr.:</u>

Q=Q_a.B

Q=74256\times 1260

Q=93562560\ J

7 0
2 years ago
A car initially traveling at 24 m/s slams on the brakes and moves forward 196 m before coming to a complete halt. What was the m
Marrrta [24]

Answer:

-1.47 m/s^2

Explanation:

We can use the following SUVAT equation to solve the problem:

v^2 - u^2 = 2ad

where

v = 0 is the final velocity of the car

u = 24 m/s is the initial velocity

a is the acceleration

d = 196 m is the displacement of the car before coming to a stop

Solving the equation for a, we find the acceleration:

a=\frac{v^2-u^2}{2d}=\frac{0-(24)^2}{2(196)}=-1.47 m/s^2

4 0
2 years ago
Other questions:
  • The forward movement of orbital waves classifies them as ____ waves.
    13·1 answer
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • A box sliding on a horizontal frictionless surface encounters a spring attached to a rigid wall and compresses the spring by a c
    9·1 answer
  • The wheel having a mass of 100 kg and a radius of gyration about the z axis of kz=300mm, rests on the smooth horizontal plane.a.
    11·1 answer
  • (1 point) Which of the following statements are true?A.The equation Ax=b is referred to as a vector equation.B.If the augmented
    10·1 answer
  • Learning Goal: How do 2 ordinary waves build up a "standing" wave? A very generic formula for a traveling wave is: y1(x,t)=Asin(
    5·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • Una masa de 0,5 kg está sobre una pendiente inclinada 20º sujeta mediante una cuerda paralela a la pendiente que impide que desl
    12·1 answer
  • A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can
    5·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!