answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
2 years ago
9

A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the

center of the ring. It is observed that the electric field at point P, which is on the axis of the ring and 70 cm from its center, is equal to 2000 N/C and is directed away from the center of the ring. Determine the value of q.
Physics
1 answer:
kow [346]2 years ago
7 0

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

You might be interested in
Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
USPshnik [31]
No because an atom consists of <u>two</u> main parts <em>and</em> <u>three</u> subatomic particles - protons, neutrons, electrons. Each one is smaller than an atom, therefore they are subatomic particles. An atom only requires protons and electrons to be an atom - e.g. Hydrogen has 1 proton and 1 electron. Neutrons do not affect the overall charge of the atom, and only increase the atomic mass.
7 0
2 years ago
Read 2 more answers
A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne
Ulleksa [173]

(a) 34 V

The average emf induced in the loop is given by Faraday-Newmann-Lenz law:

\epsilon = -\frac{\Delta \Phi_B}{\Delta t} (1)

where

\Delta \Phi_B is the variation of magnetic flux through the coil

\Delta t = 2.0 ms = 0.002 s is the time interval

We need to find the magnetic flux before and after. The magnetic flux is given by:

\Phi_B = BA

where

B is the magnetic field intensity

A is the area of the coil

The radius of the coil is r = 12.0 cm = 0.12 m, so its area is

A=\pi r^2 = \pi (0.12 m)^2 = 0.045 m^2

At the beginning, the magnetic field is

B_i = 1.5 T

so the flux is

\Phi_i = B_i A = (1.5 T)(0.045 m^2)=0.068 Wb

while after the removal of the coil, the magnetic field is zero, so the flux is also zero:

\Phi_f = 0

so the variation of magnetic flux is

\Delta \Phi = 0-0.068 Wb=-0.068 Wb

And substituting into (1) we find the average emf in the coil

\epsilon=-\frac{-0.068 Wb}{0.002 s}=34 V

(b) Counterclockwise

In order to understand the direction of the induced current, we have to keep in mind the negative sign in Lenz's law (1), which tells that the direction of the induced current must be such that the magnetic field produced by this current opposes the variation of magnetic flux in the coil.

In this situation, the magnetic flux through the coil is decreasing, since the coil is removed from the field. So, the induced current must be such that it produces a magnetic field whose direction is the same as the direction of the external magnetic field, which is upward along the positive z-direction.

Looking down from above and using the right-hand rule on the loop (thumb: direction of the current, other fingers wrapped: direction of magnetic field), we see that in order to produce at the center of the coil a magnetic field which is along positive z-direction, the induced current must be counterclockwise.

4 0
2 years ago
A body of mass 5.0 kg is suspended by a spring which stretches 10 cm when the mass is attached. It is then displaced downward an
defon

Answer:

0.05cos10t

Explanation:

X(t) = Acos(wt+φ)

The oscillation angular frequency can be calculated using below formula

w = √(k/M)

Where K is the spring constant

But we were given body mass of 5.0 kg

We know acceleration due to gravity as 9.8m)s^2

The lenghth of spring which stretches =10 cm

Then we can calculate the value of K

k = (5.0kg*9.8 m/s^2)/0.10 m

K= 490 N/m

Then if we substitute these values into the formula above we have

w = √(k/M)

w = √(490/5)

= 9.90 rad/s=10rads/s(approximately)

Its position as a function of time can be calculated using the below expresion

X(t) = Acos(wt+φ)

We were given amplitude of 5 cm , if we convert to metre = 0.05m

w=10rads/s

Then if we substitute we have

X(t)=0.05cos(10×t)

X(t)= 0.05cos10t

Therefore,Its position as a function of time=

X(t)= 0.05cos10t

4 0
2 years ago
Suggest reasons why poaching for subsistence is likely to be less damaging to the biodiversity of an area than poaching for prof
dlinn [17]
An example for ruining a biodiversity is fishing. The two factors that have contributed to increased fishing in deep ocean waters in recent years are the human population growth and decreased fishing opportunities inshore. Increase population growth increases the demand for food which also leads to increase in fish demand. Because the fish demand is high, inshore fishing opportunities decrease that is why deep ocean waters is the new venue for fishing. This may sound absurd but poaching for subsistence is likely to be less damaging to he biodiversity <span>of an area than poaching for profit. Because the people do not care anymore to the biodiversity that they interrupted just to get back more profit. They do not care what must be taken from it like getting bigger fishes and leaving the smaller ones behind to maintain productivity.</span>

5 0
2 years ago
Here's an interesting challenge you can give to a friend. Hold a $1 (or larger!) bill by an upper corner. Have a friend prepare
Brrunno [24]

Answer:

t <t _reaction

We see from this that the bill passes completely through the fingers before the reaction time (time without movement) passes and therefore before closing the fingers.

Explanation:

In this exercise we can use the free fall kinematics, let's calculate the time that the upper corner of the bill takes to pass through the fingers of her friend, when releasing the bill it starts with zero speed, let's use the equation

         y = v₀ t + ½ g t²

         y = ½ g t²

         t = √(2y / g)

let's calculate

         t = √ (2 0.16 / 9.8)

         t = 0.18 s

the reaction time is

         t_reaction = 0.25 s

Thus

         t <t _reaction

We see from this that the bill passes completely through the fingers before the reaction time (time without movement) passes and therefore before closing the fingers.

8 0
2 years ago
Other questions:
  • The length of the side of a cube having a density of 12.6 g/ml and a mass of 7.65 g is __________ cm.
    6·1 answer
  • Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
    15·2 answers
  • Image that the radiation emitted by the nitrogen at a frequency of 8.88×1014 Hz is absorbed by an electron in a molecule of meth
    9·2 answers
  • Two swimmers begin a race and Swimmer A completes each length of the pool in 30 seconds, while Swimmer B completes each length i
    6·1 answer
  • A 1/10th scale model of an airplane is tested in a wind tunnel. The reynolds number of the model is the same as that of the full
    7·1 answer
  • Betelgeuse is the bright red star representing the left shoulder of the constellation Orion. All the following statements about
    7·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
    10·1 answer
  • In seismology, the P wave is a longitudinal wave. As a P wave travels through the Earth, the relative motion between the P wave
    13·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!