answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
2 years ago
5

A 0.2-kg steel ball is dropped straight down onto a hard, horizontal floor and bounces straight up. The ball's speed just before

and just after impact with the floor is 10 m/s. Determine the magnitude of the impulse delivered to the floor by the steel ball.
Physics
2 answers:
nadya68 [22]2 years ago
7 0

Answer:

Explanation:

Given

mass of steel ball m=0.2\ kg

initial speed of ball u=10\ m/s

Final speed of ball v=-10\ m/s (in upward direction)

Impulse imparted is given by change in the momentum of object

therefore impulse J is given by

J=\Delta P

\Delta P=m(v-u)

\Delta P=0.2(-10-10)

\Delta =-4\ N-s

so magnitude of Impulse =4 N-s

MAVERICK [17]2 years ago
4 0

Answer:

4 N s

Explanation:

mass, m = 0.2 kg

initial velocity, u = - 10 m/s (downward )

final velocity, v = + 10 m/s (upwards)

Impulse is defined a the change in momentum .

Impulse = m ( v - u)

Impulse = 0.2 ( 10 + 10)

Impulse = 4 N s

thus, the impulse is 4 N s .

You might be interested in
1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
azamat

Answer:

\dot{W} = 339.84 W

Explanation:

given data:

flow Q = 9 m^{3}/s

velocity = 8 m/s

density of air = 1.18 kg/m^{3}

minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

\dot{W} =\dot{m}\frac{V^{2}}{2}

here \dot{m}is mass flow rate and given as

\dot{m} = \rho*Q

\dot{W} =\rho*Q\frac{V^{2}}{2}

Putting all value to get minimum power

\dot{W} =1.18*9*\frac{8^{2}}{2}

\dot{W} = 339.84 W

7 0
2 years ago
Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
AysviL [449]
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to
E= \frac{\sigma}{2\epsilon_0}
where
\sigma is the charge density
\epsilon_0 is the vacuum permittivity

We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
E=30 N/C
7 0
2 years ago
If a 3-kg rabbit's leg muscles act as imperfectly elastic springs, how much energy will they hold if the rabbit lands from a hei
DiKsa [7]

Answer;

- 15 J

Explanation;

-Potential energy is defined as mechanical energy, stored energy, or energy caused by its position.

-For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m /s² at the surface of the earth) and h is the height in meters.

Potential energy of the rabbit at the peak of its height is

PE = (3)(10)(0.5) = 15 J

(around 14.7 but because energy is lost, it is less than that)

3 0
2 years ago
Read 2 more answers
Two small diameter, 10gm dielectric balls can slide freely on a vertical channel each carry a negative charge of 1microcoulomb.
dimulka [17.4K]

Answer:

The distance of separation is d = 0.092 \ m

Explanation:

The mass of the each ball is  m= 10 g  =  0.01 \ kg

 The negative charge on each ball is q_1 =q_2=q =  1 \mu C  =  1 *10^{-6} \ C

Now we are told that the lower ball is  restrained from moving this implies that the net force acting on it is  zero

Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

          F =  \frac{kq_1 * q_2}{d}

=>       m* g  =  \frac{kq_1 * q_2}{d}

here k the the coulomb's  constant with a value  k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

So  

      0.01 * 9.8  =  \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}

            d = 0.092 \ m

5 0
2 years ago
An object on a number line moved from x = 15 cm to x = 165 cm and then
olasank [31]

Answer:

v_avg = 2.9 cm/s

Explanation:

The average velocity of the object is the sum of the distance of all its trajectories divided the time:

v_{avg}=\frac{x_{all}}{t}

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm

Then, x_all = 150cm + 140cm = 290cm

The average velocity is, for t = 100s

v_{avg}=\frac{290cm}{100s}=2.9\frac{cm}{s}

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s

3 0
2 years ago
Read 2 more answers
Other questions:
  • At ground level g is 9.8m/s^2. Suppose the earth started to increase its angular velocity. How long would a day be when people o
    11·2 answers
  • A 2.50 × 105 W motor is used for 26.4 s to pull a boat straight toward shore. How far does the boat move toward shore if a force
    15·1 answer
  • The square loop shown in the figure moves into a 0.80 T magnetic field at a constant speed of 10 m/s. The loop has a resistance
    12·1 answer
  • Rana writes a summary about a mass on a spring in simple harmonic motion as it moves upward from the equilibrium position toward
    9·2 answers
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • A flat rectangular loop of wire carrying a 4.0-a current is placed in a uniform 0.60-t magnetic field. the magnitude of the torq
    13·1 answer
  • A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m
    10·1 answer
  • A dog of mass 10 kg sits on a skateboard of mass 2 kg that is initially traveling south at 2 m/s. The dog jumps off with a veloc
    9·1 answer
  • A particle traveling in a circular path of radius 300 m has an instantaneous velocity of 30 m/s and its velocity is increasing a
    13·1 answer
  • An electric motor consumes 10.8 kJ of electrical energy in 1.00 min . Part A If one-third of this energy goes into heat and othe
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!