Answer
given,
Mass of Kara's car = 1300 Kg
moving with speed = 11 m/s
time taken to stop = 0.14 s
final velocity = 0 m/s
distance between Lisa ford and Kara's car = 30 m
a) change in momentum of Kara's car
Δ P = m Δ v


Δ P = - 1.43 x 10⁴ kg.m/s
b) impulse is equal to change in momentum of the car
I = - 1.43 x 10⁴ kg.m/s
c) magnitude of force experienced by Kara
I = F x t
I is impulse acting on the car
t is time
- 1.43 x 10⁴= F x 0.14
F = -1.021 x 10⁵ N
negative sign represents the direction of force
Answer:

Explanation:
You can consider that the force that acts over the proton is the same to the force over the electron. This is because the electric force is given by:


where E is the constant electric field between the parallel plates, and is the same for both electron and proton. Also, the charge is the same.
by using the Newton second law for the proton, and by using kinematic equation for the calculation of the acceleration you can obtain:

(it has been used that vp^2 = v_o^2+2ad) where d is the separation of the plates, ap the acceleration of the proton, vp its velocity and mp its mass.
By doing the same for the electron you obtain:

we can equals these expressions for both proton and electron, because the forces qE are the same:

Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer:
Obviously Lengthen...
or 
Explanation:
As we can observe from the equation, time period of a simple pendulum depends upon the length directly. When the gravitational acceleration increases the time period of the pendulum decreases and vice versa. So, by increasing the length, the time period can be adjusted...
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired