answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
2 years ago
15

A proton of mass mp is released from rest just above the lower plate and reaches the top plate with speed vp. An electron of mas

s me is released from rest just below the upper plate. Calculate the speed ve of the electron when it reaches the bottom plate, in terms of vp, mp, me, and physical constants, as appropriate. Ignore gravitational effects.
Physics
1 answer:
vodka [1.7K]2 years ago
4 0

Answer:

v_e=\sqrt{\frac{m_pv_p^2}{m_e}}

Explanation:

You can consider that the force that acts over the proton is the same to the force over the electron. This is because the electric force is given by:

F=qE

F_p=F_e

where E is the constant electric field between the parallel plates, and is the same for both electron and proton. Also, the charge is the same.

by using the Newton second law for the proton, and by using kinematic equation for the calculation of the acceleration you can obtain:

m_pa_p=qE\\\\a_p=\frac{v_p^2}{2d}\\\\\frac{m_pv_p^2}{2d}=qE

(it has been used that vp^2 = v_o^2+2ad) where d is the separation of the plates, ap the acceleration of the proton, vp its velocity and mp its mass.

By doing the same for the electron you obtain:

\frac{m_ev_e^2}{2d}=qE

we can equals these expressions for both proton and electron, because the forces qE are the same:

\frac{m_pv_p^2}{2d}=\frac{m_ev_e^2}{2d}\\\\v_e=\sqrt{\frac{m_pv_p^2}{m_e}}

You might be interested in
The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
jolli1 [7]

not enough information is given to determine the velocity of the object at time to=0.00s

3 0
2 years ago
Technician A says that some ABS wheel speed sensors are used as part of the tire pressure monitoring system (TPMS) . Technician
erica [24]

Answer:

The correct answer is C) Technician A and B are both correct.

Explanation:

An anti-lock braking system (ABS) is a vehicle safety system that allows the wheels of a car to maintain tractive contact with the road surface while braking, preventing the wheels from locking up (ceasing rotation) and avoiding uncontrolled skidding. It is an automated system that uses the principles of cadence braking.

Anti-lock braking systems since their invention and introduction, have been improved remarkably in a bid to further improve driver safety and comfort.  <em>Recent technology not only prevents wheel lock up under braking, but can also provide data for the on board navigation system, traction control system, emergency brake assist, </em><u><em>hill start assist</em></u><em>, electronic stability control and the front-to-rear brake bias</em>. None of the above would be possible without wheel speed sensors.

The Tire Pressure Monitoring System (TMPS) is an electronic system in your vehicle that monitors your tire air pressure and alerts you when it falls dangerously low.

Indirect TPMS works with your car’s Antilock Braking System’s (ABS) wheel speed sensors. If a tire’s pressure is low, it will roll at a different wheel speed than the other tires. This information is detected by your car’s computer system, which triggers the dashboard indicator light.

Cheers!

3 0
2 years ago
Read 2 more answers
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
Anna [14]

Answer:(a)891.64 N

(b)0.7

Explanation:

Mass of crate m=100 kg

Crate slows down in s=1.5 m

initial speed u=1.77 m/s

inclination \theta =30^{\circ}

From Work-Energy Principle

Work done by all the Forces is equal to change in Kinetic Energy

W_{friction}+W_{gravity}=\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2

W_{gravity}=mg(0-h)=mgs\sin \theta

W_{gravity}=-mgs\sin \theta

W_{gravity}=-100\times 9.8\times 1.5\sin 30=-735 N

change in kinetic energy=\frac{1}{2}\times 100\times 1.77^2=156.64 J

W_{friction}=156.64+735=891.645

(b)Coefficient of sliding friction

f_r\cdot s=W_{friciton}

891.645=f_r\times 1.5

f_r=594.43 N

and f_r=\mu mg\cos \theta

\mu 100\times 9.8\times \cos 30=594.43

\mu =0.7

5 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
A neutron at rest decays (breaks up) to a proton and an electron. Energy is released in the decay and appears as kinetic energy
SashulF [63]

Answer:

5.444\times 10^{-4}

Explanation:

The momentum of the neutron before and after the decay  is the same since there's no external force.

P_{sys}=const\\\\P=mv\\\\K=0.5mv^2

#The neutron is initially at rest, so after the decay:

P_A+P_B=0\\\\P_A=-P_B

#After decay, the proton has +ve direction  with a velocity v_Awhile the electron moves in a negative direction with a velocity v_B

Therefore:

P_A=m_Av_A, P_B=m_Bv_B\\\\\therefore m_Av_A,=m_Bv_B

Let the energy released during the decay be Q:

Q=K_{tot}=K_A+K_B\\\\Q=K_A+0.5m_Bv_B^2\\\\Q=K_A+0.5m_B(\frac{m_A}{m_B})^2v_A^2\\\\\ But \ K_A=0.5m_Av_A^2\\\\\therefore Q=K_A+\frac{m_A}{m_B}K_A=K_A(1+\frac{m_A}{m_B})\\\\=Q=\frac{m_A+m_B}{m_B}K_A\\\\m_A=1836m_B\\\\\frac{K_A}{Q}=\frac{m_B}{1836m_B+m_B}=\frac{1}{1837}\\\\\frac{K_A}{Q}=5.444\times10^{-4}

Hence,Kp/Ktot is 5.444x10^(-4)

4 1
2 years ago
Other questions:
  • A boy is exerting a force of 70 N at a 50-degree angle on a lawn mower. He is accelerating at 1.8 m/s2. Round the answers to the
    6·2 answers
  • A double slit apparatus is held 1.2 m from a screen. [___/4] (a) When red light (λ = 600 nm) is sent through the double slit, th
    13·1 answer
  • You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
    15·1 answer
  • A battery with internal resistance r is connected to a load resistance R. If R is increased, does the terminal voltage of the ba
    14·1 answer
  • The cantilever beam AB has a rectangular cross section of 150 × 200 mm. Knowing that the tension in the cable BD is 10.8 kN and
    8·1 answer
  • If you are swimming upstream (i.e., against the current), at what speed does your friend on the shore see you moving?
    12·1 answer
  • Iron man wears an awesome ironsuit.He is flying over high current carrying wire. Will he be affected?
    12·1 answer
  • The velocity of a passenger relative to a boat is -vpb. The velocity of the boat relative to the river it is moving on is vbr. T
    7·1 answer
  • A Body OF Volume 36cc Floats With 3/4 of its volume submerged in water . The density Of Body is
    13·1 answer
  • Irrigation channels that require regular flow monitoring are often equipped with electromagnetic flowmeters in which the magneti
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!