Answer:
Explanation:
The mass of the block is 0.5kg
m = 0.5kg.
The spring constant is 50N/m
k =50N/m.
When the spring is stretch to 0.3m
e=0.3m
The spring oscillates from -0.3 to 0.3m
Therefore, amplitude is A=0.3m
Magnitude of acceleration and the direction of the force
The angular frequency (ω) is given as
ω = √(k/m)
ω = √(50/0.5)
ω = √100
ω = 10rad/s
The acceleration of a SHM is given as
a = -ω²A
a = -10²×0.3
a = -30m/s²
Since we need the magnitude of the acceleration,
Then, a = 30m/s²
To know the direction of net force let apply newtons second law
ΣFnet = ma
Fnet = 0.5 × -30
Fnet = -15N
Fnet = -15•i N
The net force is directed to the negative direction of the x -axis
Answer:

Explanation:
Aceleration is a change on the velocity of the object in a given time.
For this case: the initial velocity is

and the final velocity is :

so, the change in velocity is:

and the change in time , according to the problem:

So, the aceleration is:

Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW
Answer:
a) v = √ g x
, b) W = 2 m g d
, c) a = ½ g
Explanation:
a) For this exercise we use Newton's second law, suppose that the block of mass m moves up
T-W₁ = m a
W₃ - T = M a
w₃ - w₁ = (m + M) a
a = (3m - m) / (m + 3m) g
a = 2/4 g
a = ½ g
the speed of the blocks is
v² = v₀² + 2 ½ g x
v = √ g x
b) Work is a scalar, therefore an additive quantity
light block s
W₁ = -W d = - mg d
3m heavy block
W₂ = W d = 3m g d
the total work is
W = W₁ + W₂
W = 2 m g d
c) in the center of mass all external forces are applied, they relate it is
a = ½ g
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.