Answer:
A) T1 = 566 k = 293°C
B) T2 = 1132 k = 859°C
Explanation:
A)
The average kinetic energy of the molecules of an ideal gas is givwn by the formula:
K.E = (3/2)KT
where,
K.E = Average Kinetic Energy
K = Boltzman Constant
T = Absolute Temperature
At 10°C:
K.E = K10
T = 10°C + 273 = 283 K
Therefore,
K10 = (3/2)(K)(283)
FOR TWICE VALUE OF K10:
T = T1
Therefore,
2 K10 = (3/2)(K)(T1)
using the value of K10:
2(3/2)(K)(283) = (3/2)(K)(T1)
<u>T1 = 566 k = 293°C</u>
<u></u>
B)
The average kinetic energy of the molecules of an ideal gas is given by the formula:
K.E = (3/2)KT
but K.E is also given by:
K.E = (1/2)(m)(vrms)²
Therefore,
(3/2)KT = (1/2)(m)(vrms)²
vrms = √(3KT/m)
where,
vrms = Root Mean Square Velocity of Molecule
K = Boltzman Constant
T = Absolute Temperature
m = mass
At
T = 10°C + 273 = 283 K
vrms = √[3K(283)/m]
FOR TWICE VALUE OF vrms:
T = T2
Therefore,
2 vrms = √(3KT2/m)
using the value of vrms:
2√[3K(283)/m] = √(3KT2/m)
2√283 = √T2
Squaring on both sides:
(4)(283) = T2
<u>T2 = 1132 k = 859°C</u>
Answer:
(a) The total energy of the object at any point in its motion is 0.0416 J
(b) The amplitude of the motion is 0.0167 m
(c) The maximum speed attained by the object during its motion is 0.577 m/s
Explanation:
Given;
mass of the toy, m = 0.25 kg
force constant of the spring, k = 300 N/m
displacement of the toy, x = 0.012 m
speed of the toy, v = 0.4 m/s
(a) The total energy of the object at any point in its motion
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²
E = 0.0416 J
(b) the amplitude of the motion
E = ¹/₂KA²

(c) the maximum speed attained by the object during its motion

Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Explanation:
Given that,
Force with which a child hits a ball is 350 N
Time of contact is 0.12 s
We need to find the impulse received by the ball. The impulse delivered is given by :

So, the impulse is 42 N-m..
We know that he change in momentum is also equal to the impulse delivered.
So, impulse = 42 N-m and change in momentum =42 N-m.
a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:
