answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
2 years ago
6

An astronaut stands on the surface of an asteroid. The astronaut then jumps such that the astronaut is no longer in contact with

the surface. The astronaut falls back down to the surface after a short time interval. Which of the following forces CANNOT be neglected when analyzing the motion of the astronaut?

Physics
1 answer:
Anna71 [15]2 years ago
6 0

(D) The gravitational force between the astronaut and the asteroid.

Reason :

All the other forces given in the options, except (D), doesn't account for the motion of the astronaut. They are the forces that act between nucleons or atoms and neither of them accounts for an objects motion.

You might be interested in
Identify the false statement: Select one:
svet-max [94.6K]

Answer:

D) Synthesizers have always had a well-established presence in standard ensembles

Explanation:

As synthesizers are electronic music instruments that can create the sounds of many different musical instruments, they have been seen as a threat to many musicians since their invention.

8 0
2 years ago
Read 2 more answers
A jogger runs 10.0 blocks do east, 5.0 blocks due South, and another two. Zero blocks do east. Assume all blocks are equal size,
Annette [7]

Jogger moves in three displacements

d1 = 10 blocks East

d2 = 5 blocks South

d3 = 2 blocks East

now we can say

total displacement towards East direction will be

d_x = 10 + 2= 12 blocks

Total displacement towards South

d_y = 5 block

now to find the net displacement we can use vector addition

d = \sqrt{d_x^2 + d_y^2}

d = \sqrt{12^2 + 5^2}

d = 13 blocks

<em>so magnitude of net displacement will be equal to 13 blocks</em>

6 0
2 years ago
An electron moving at right angles to a 0.1 T magnetic field experiences an acceleration of 6 × 1015 m.s-2. What is the speed of
GaryK [48]

Explanation:

It is given that,

Magnetic field, B = 0.1 T

Acceleration, a=6\times 10^{15}\ m/s^2

Charge on electron, q=1.6\times 10^{-19}\ C    

Mass of electron, m=9.1\times 10^{-31}\ kg    

(a) The force acting on the electron when it is accelerated is, F = ma

The force acting on the electron when it is in magnetic field, F=qvB\ sin\theta

Here, \theta=90

So, ma=qvB

Where

v is the velocity of the electron

B is the magnetic field

v=\dfrac{ma}{qB}

v=\dfrac{9.1\times 10^{-31}\ kg\times 6\times 10^{15}\ m/s^2}{1.6\times 10^{-19}\ C\times 0.1\ T}

v = 341250  m/s

or

v=3.41\times 10^5\ m/s

So, the speed of the electron is 3.41\times 10^5\ m/s

(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.

7 0
2 years ago
A 52 N sled is pulled across a cement sidewalk at constant speed. A horizontal force of 36 N is exerted. What is the coefficient
Andre45 [30]

Answer:

μ = 0.692

Explanation:

In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.

Attached is an image with the respective forces:

A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.

Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.

The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.

The process of solving this problem can be seen in the attached image.

5 0
2 years ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
Other questions:
  • An electric buzzer is activated, then sealed inside a glass chamber. When all of the air is pumped out of the chamber, how is th
    12·1 answer
  • Two point charges of values +3.4 and +6.6 μc are separated by 0.10 m. what is the electrical potential at the point midway betwe
    11·1 answer
  • A 7-n vector at an angle of 45° to the horizontal has a vertical component that is about _______.
    6·1 answer
  • Camping equipment weighing 6000 n is pulled across a frozen lake by means of a horizontal rope. the coefficient of kinetic frict
    9·1 answer
  • How long does it take for the velocity of the rain drop to reach 99% of its terminal velocity? (assume the conditions from part
    6·1 answer
  • Ashley made a paper boat and attached paperclips to the edges. In order to control her boat she used a horseshoe magnet. How is
    6·2 answers
  • A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintains that velocity for 10 s, and then decelerates at th
    8·1 answer
  • Why must the height of the meniscus in the graduated cylinder match the height of the water in the tub when measuring volume?
    12·1 answer
  • Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
    5·1 answer
  • Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!