answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
2 years ago
10

Charlie is playing with his daughter Torrey in the snow. She sits on a sled and asks him to slide her across a flat, horizontal

field. Charlie has a choice of (a) pushing her from behind by applying a force downward on her shoulders at ​30^\circ​ below the horizontal (Fig. a), or (b) attaching a rope to the front of the sled and pulling with a force at ​30^\circ​ above the horizontal (Fig. b). Which would be easier for him and why?
Physics
2 answers:
poizon [28]2 years ago
6 0

Answer:

(b) attaching a rope to the front of the sled and pulling with a force at ​30^\circ​ above the horizontal

Explanation:

Remember that it is easier to pull an object than to push it, this is because when you pull you often do it with an angle towards the positive side of the vertical and when you push you often do it towards the negative side of the vertical this increases the friction and the force that is keeping you from being able to move the object.

professor190 [17]2 years ago
3 0

Answer:

b

Explanation:

Pulling up with the rope would decrease the frictional force, pushing down would increase the frictional force.

You might be interested in
Zoe has 25 grams of water (c = 4.186 ) at 10°C, which she mixes with 12 grams of water at 30°C. Assume that no heat is lost to t
fenix001 [56]
Since heat here is conserved that means that the heat out is equal to the heat in. We use the expression Q = mC(T2-T1). We caclulate as follows:

Q absorbed = Q released
m1 C (T-T1) = -m2 C (T-T1)

C can be cancelled since they are the same substance.

m1 (T-T1) = -m2 (T-T1)
25 (T-10) = -12 (T-30)
T = 16.49 degrees Celsius

3 0
2 years ago
Read 2 more answers
The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t^2 − 4.0t^3 m. Find (a) the velocity
KengaRu [80]
<h2>Answer:</h2>

(a) v(t) = [10.0t - 12.0t²] m/s  and a(t) = [10.0 - 24.0t ] m/s² respectively

(b) -28.0m/s and -38.0m/s² respectively

(c) 0.83s

(d) 0.83s

(e) x(t)  = 1.1573 m           [where t = 0.83s]

<h2>Explanation:</h2>

The position equation is given by;

x(t) = 5.0t² - 4.0t³ m           --------------------(i)

(a) Since velocity is the time rate of change of position, the velocity, v(t), of the particle as a function of time is calculated by finding the derivative of equation (i) as follows;

v(t) = dx(t) / dt = \frac{dx}{dt} = \frac{d}{dt} [ 5.0t² - 4.0t³ ]

v(t) = 10.0t - 12.0t²     --------------------------------(ii)

Therefore, the velocity as a function of time is v(t) = 10.0t - 12.0t² m/s

Also, since acceleration is the time rate of change of velocity, the acceleration, a(t), of the particle as a function of time is calculated by finding the derivative of equation (ii) as follows;

a(t) = dx(t) / dt = \frac{dv}{dt} =  \frac{d}{dt} [ 10.0t - 12.0t² ]

a(t) = 10.0 - 24.0t             --------------------------------(iii)

Therefore, the acceleration as a function of time is a(t) = 10.0 - 24.0t m/s²

(b) To calculate the velocity at time t = 2.0s, substitute the value of t = 2.0 into equation (ii) as follows;

=> v(t) =  10.0t - 12.0t²

=> v(2.0) = 10.0(2) - 12.0(2)²

=> v(2.0) = 20.0 - 48.0

=> v(2.0) = -28.0m/s

Also, to calculate the acceleration at time t = 2.0s, substitute the value of t = 2.0 into equation (iii) as follows;

=> a(t) = 10.0 - 24.0t

=> a(2.0) = 10.0 - 24.0(2)

=> a(2.0) = 10.0 - 48.0

=> a(2.0) = -38.0 m/s²

Therefore, the velocity and acceleration at t = 2.0s are respectively -28.0m/s and -38.0m/s²

(c) The time at which the position is maximum is the time at which there is no change in position or the change in position is zero. i.e dx / dt = 0. It also means the time at which the velocity is zero. (since velocity is dx / dt)

Therefore, substitute v = 0 into equation (ii) and solve for t as follows;

=> v(t) = 10.0t - 12.0t²

=> 0 = 10.0t - 12.0t²

=> 0 = ( 10.0 - 12.0t ) t

=> t = 0            or             10.0 - 12.0t = 0

=> t = 0            or             10.0 = 12.0t

=> t = 0            or             t = 10.0 / 12.0

=> t = 0            or             t = 0.83s

At t=0 or t = 0.83s, the position of the particle will be maximum.

To get the more correct answer, substitute t = 0 and t = 0.83 into equation (i) as follows;

<em>Substitute t = 0 into equation (i)</em>

x(t) = 5.0(0)² - 4.0(0)³ = 0

At t = 0; x = 0

<em>Substitute t = 0.83s into equation (i)</em>

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m

At t = 0.83; x = 1.1573 m

Therefore, since the value of x at t = 0.83s is 1.1573m is greater than the value of x at t = 0 which is 0m, then the time at which the position is at maximum is 0.83s

(d) The velocity will be zero when the position is maximum. That means that, it will take the same time calculated in (c) above for the velocity to be zero. i.e t = 0.83s

(e) The maximum position function is found when t = 0.83s as shown in (c) above;

Substitute t = 0.83s into equation (i)

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m            [where t = 0.83s]

8 0
2 years ago
Why is thesize saved prior to entering the for loop? 2. what is the running time of removefirsthalf if lst is an arraylist? 3. w
Mrac [35]
<span>After entering the loop, it should use the correct list size and the loop will be affected if the remove call changes the size of the list. If lst is an Arraylist the running time of removefirsthalf is O (n^2). So when the beginning is removed the next element will move forward. If lst is a LinkedList which is a dynamic structure the running is O (n) for removefirsthalf</span>
8 0
2 years ago
A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magne
Taya2010 [7]

Answer:

Explanation:

a )  No of turns per metre

n = 450 / .35

= 1285.71

Magnetic field inside the solenoid

B = μ₀ n I

Where I is current

B = 4π x 10⁻⁷ x 1285.71 x 1.75

= 28.26 x 10⁻⁴ T

This is the uniform magnetic field inside the solenoid.

b )

Magnetic field around a very long wire at a distance d is given by the expression

B = ( μ₀ /4π ) X 2I / d

= 10⁻⁷ x 2 x ( 1.75 / .01 )

= .35 x 10⁻⁴ T

In the second case magnetic field is much less. It is due to the fact that in the solenoid magnetic field gets multiplied due to increase in the number of turns. In straight coil this does not happen .

6 0
2 years ago
Read 2 more answers
We observe that a moving charged particle experiences no magnetic force. From this we can definitely conclude that:_______
Leto [7]

Answer:

b. the particle must be moving parallel to the magnetic field.

Explanation:

The magnetic force on a moving charged particle is given by;

F = qvBsinθ

where;

q is the charge of the particle

v is the velocity of the particle

B is the magnetic field

θ is the angle between the magnetic field and velocity of the moving particle.

When is the charge is stationary the magnetic force on the charge is zero.

Also when the charge is moving parallel to the magnetic field, the magnetic force is zero.

Therefore, when a moving charged particle experiences no magnetic force, we can definitely conclude that the particle must be moving parallel to the magnetic field.

b. the particle must be moving parallel to the magnetic field.

5 0
2 years ago
Other questions:
  • A circuit is supplied with 60 VDC and contains two series resistors with values of 100 and 400 . What is the total current in th
    9·1 answer
  • Which field in an 802.11a plcp frame are used to initialize part of the transmitter and receiver circuits?
    8·1 answer
  • A car is traveling north at 17.7m/s After 12 s its velocity is 14.1m/s in the same direction. Find the magnitude and direction o
    11·1 answer
  • What type of light does this light bulb produce most (i.e. at what wavelength does the spectrum have maximum intensity)?
    7·1 answer
  • A man stands on his balcony, 130 feet above the ground. He looks at the ground, with his sight line forming an angle of 70° with
    7·1 answer
  • All of these are examples of pseudopsychology EXCEPT:
    15·2 answers
  • An oscilloscope shows a steady sinusoidal signal of 5 Volt peak to peak, which spans 5 cm in vertical direction on the screen. B
    8·1 answer
  • When a switch is closed to complete a DC series RL circuit which has a large time constant, Group of answer choices the electric
    6·1 answer
  • Suppose we have a radar dish that generates a strong signal that travels out to hit an asteroid 10^9 kilometres away.
    14·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!