We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.
Answer:
A: 4 times as much
B: 200 N/m
C: 5000 N
D: 84,8 J
Explanation:
A.
In the first question, we have to caculate the constant of the spring with this equation:

Getting the k:
![k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bm%2Ag%7D%7Bx%7D%20%3D%5Cfrac%7B0%2C2%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B0%2C05%5Bm%5D%7D%20%3D39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D)
Then we can calculate how much the spring stretch whith the another mass of 0,2kg:
![x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bm%2Ag%7D%7Bk%7D%20%3D%5Cfrac%7B0%2C4%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%7D%20%3D0%2C1%5Bm%5D%5C%5C)
The energy of a spring:

For the first case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C05%5Bm%5D%29%5E%7B2%7D%20%3D0%2C049%20%5BJ%5D)
For the second case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C1%5Bm%5D%29%5E%7B2%7D%20%3D0%2C0196%20%5BJ%5D)
If you take the relation E2/E1 = 4.
B.
We have the next facts:
x=0,005 m
E = 0,0025 J
Using the energy equation for a spring:
⇒![k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7BE%2A2%7D%7Bx%5E%7B2%7D%20%7D%20%3D%5Cfrac%7B0%2C0025%5BJ%5D%2A2%7D%7B%280%2C005%5Bm%5D%29%5E%7B2%7D%20%7D%20%3D200%5B%5Cfrac%7BN%7D%7Bm%7D%20%5D)
C.
The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.
![E=W*h=500[N]*10[m]=5000[J]](https://tex.z-dn.net/?f=E%3DW%2Ah%3D500%5BN%5D%2A10%5Bm%5D%3D5000%5BJ%5D)
Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.
D.
The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.
The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:
W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J
Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
We use the equation of motion,

Here, S is the height, u is initial velocity and a is acceleration.
Given,
As acorn falls from tree, therefore we take the value of
and initial velocity
.
Substituting these values in equation of motion,

Thus, the time taken by the acorn to fall 20 feet ( 6.096 m ) is 1.12 s.