Answer:
Q = ba⁴ * ε₀
Explanation:
From Gauss's Law, we know that
flux Φ = Q / ε₀
where ε₀ = 8.85e-12 C²/N·m²
and also,
Φ = EAcosθ
The field is directed along the x-axis, so that all of the flux passes through the side of the cube at x = a. This means that θ = 0º, and thus
Φ = EAcos0
Φ = EA
E = bx² meanwhile, we are interested in the point where x = a, so we substitute and then
E = ba²
Since A = a² for the cube face, we have
Q / ε₀ = E * A
Q / ε₀ = ba² * a²
so that
Q = ba⁴ * ε₀
Answer:
The temperature of the gas is 1197.02 K
Explanation:
From ideal gas law;
PV = nRT
Where;
P is the pressure of the gas
V is the volume of the gas
R is ideal gas constant = 8.314 L.kPa/mol.K
T is the temperature of the gas
n is the number of moles of gas
Volume of the gas in the cylindrical container = πr²h
Given;
r = 6/2 = 3 cm = 0.03 m
h = 11 cm = 0.11 m
V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L
number of moles of oxygen gas = Reacting mass / molar mass


Therefore, the temperature of the gas is 1197.02 K
Answer: M.A = 3
Explanation:
A ramp is an example of an inclined plain. Where the
Height H = 1.5 m
Length L = 4.5 m
Mechanical advantage of a machine is the ratio of the load to effort. While mechanical advantage M.A of an inclined plain is the ratio of the length of the plain to the height of the plain.
M.A = L/H
Substitute the values of L and H into the formula
M.A = 4.5/1.5 = 3
The mechanical advantage of the ramp is 3
Answer:
b
Explanation:
he keep the thermoter in the water longer
Answer:
3.6 m
Explanation:
let x = horizontal distance between emily and allison should be for allison to catch the ball
Find horizontal speed of the ball
vx = 12 sin 30 = 12 x 0.5 = 6 m/s
To find time taken, we will use vertical values of the ball motion
Initial velocity in vertical direction
u = 12 cos 30 = 10.392 m/s
let a = g = 9.8m/s2
Use equation of motion
s = ut +1/2at^2
s = vertical distance = 8
8 = (10.392)t + (1/2)(9.8)t^2
8 = (10.392)t + (4.9)t^2
4.9t^2 + 10.392t - 8 = 0
Using formula of quadratic or calculator, we'll find
t = 0.6 and t = -2.72
We pick t=0.6s since it's not logical time in negative
Assuming no air resistance or external forces, the ball will move 6m/s horizontally. Hence using the formula of speed
speed vx = distance x / time
x = (vx)(t)
= 6 x 0.6
= 3.6 m