The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Faster than. Hope this helps!!!
Energy is calculated as power*time, so give the wattage of 1200 W (equivalent to 1200 Joules/second) and time of 30 seconds, multiplying these gives 36000 J or 36 kJ of electrical energy.
If electrical charge or current is needed: Power = voltage * current, so given the power of 1200 watts and voltage of 120 V, current is 1200 W / 120 V = 10 Amperes. Charge is calculated by multiplying 10 A*30 s = 300 C.
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>