Answer:
I = 16 kg*m²
Explanation:
Newton's second law for rotation
τ = I * α Formula (1)
where:
τ : It is the moment applied to the body. (Nxm)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Kinematics of the wheel
Equation of circular motion uniformly accelerated :
ωf = ω₀+ α*t Formula (2)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (rad)
Data
ω₀ = 0
ωf = 1.2 rad/s
t = 2 s
Angular acceleration of the wheel
We replace data in the formula (2):
ωf = ω₀+ α*t
1.2= 0+ α*(2)
α*(2) = 1.2
α = 1.2 / 2
α = 0.6 rad/s²
Magnitude of the net torque (τ )
τ = F *R
Where:
F = tangential force (N)
R = radio (m)
τ = 80 N *0.12 m
τ = 9.6 N *m
Rotational inertia of the wheel
We replace data in the formula (1):
τ = I * α
9.6 = I *(0.6
)
I = 9.6 / (0.6
)
I = 16 kg*m²
Answer:
The angular magnification is 
Explanation:
From the question we are told
The focal length is 
The near point is 
The angular magnification is mathematically represented as

Substituting values

Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:
xcritical = d− m1
/m2
( L
/2−d)
Explanation: the precursor to this question will had been this
the precursor to the question can be found online.
ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces
smallest possible value of x such that the bar remains stable (call it xcritical)
∑τA = 0 = m2g(d− xcritical)− m1g( −d)
xcritical = d− m1
/m2
( L
/2−d)
Answer:
h = 2 R (1 +μ)
Explanation:
This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the
let's use the mechanical energy conservation agreement
starting point. Lower, just at the curl
Em₀ = K = ½ m v₁²
final point. Highest point of the curl
= U = m g y
Find the height y = 2R
Em₀ = Em_{f}
½ m v₁² = m g 2R
v₁ = √ 4 gR
Any speed greater than this the body remains in the loop.
In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law
X axis
-fr = m a (1)
Y Axis
N - W = 0
N = mg
the friction force has the formula
fr = μ N
fr = μ m g
we substitute 1
- μ mg = m a
a = - μ g
having the acceleration, we can use the kinematic relations
v² = v₀² - 2 a x
v₀² = v² + 2 a x
the length of this zone is x = 2R
let's calculate
v₀ = √ (4 gR + 2 μ g 2R)
v₀ = √4gR( 1 + μ)
this is the speed so you must reach the area with fricticon
finally have the third part we use energy conservation
starting point. Highest on the ramp without rubbing
Em₀ = U = m g h
final point. Just before reaching the area with rubbing
= K = ½ m v₀²
Em₀ = Em_{f}
mgh = ½ m 4gR(1 + μ)
h = ½ 4R (1+ μ)
h = 2 R (1 +μ)