answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
1 year ago
8

A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b

alloon through a small hoop mounted on the observation platform at the top of the Eiffel Tower, 276 m above the ground. If the balloon is to pass through the hoop at the peak of its flight, at what angle above horizontal should she launch the balloon? Please explain step by step

Physics
1 answer:
seropon [69]1 year ago
6 0

Answer:

She should launch the balloon at an angle of 59.9° above the horizontal.

Explanation:

Please, see the attached figure for a graphical description of the problem.

The position and velocity vectors of the water balloon at time "t" can be obtained using the following equations:

r = (x0 + v0 · t · cos θ, y0 + v0 · t · sin θ + 1/2 · g · t²)

v = (v0 · cos θ, v0 · sin θ + g · t)

Where:

r = position vector at time "t".

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

θ = launching angle.

y0 = initial vertical position.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).

v = velocity vector at time "t".

Let´s place the origin of the frame of reference at the launching point so that x0 and y0 = 0.

At the maximum height (276 m), the vector velocity of the balloon is horizontal (see v1 in the figure). That means that the y-component of the velocity vector is 0. Then, using the equation of the y-component of the velocity vector, we can write:

At maximum height:

vy = v0 · sin θ + g · t

0 = v0 · sin θ + g · t

We also know that at maximum height, the y-component of the position vector is 276 m (see r1y in the figure). Then:

At maximum height:

y = y0 + v0 · t · sin θ + 1/2 · g · t²  

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²

So, we have two equations with two unknowns (θ and t):

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²

0 = v0 · sin θ + g · t

To solve the system of equations, let´s take the equation of the y-component of the velocity and solve it for sin θ. Then, we will replace sin θ in the equation of the y-component of the position to obtain the time and finally obtain θ:

0 = v0 · sin θ + g · t

0 = 85.0 m/s · sin θ - 9.81 m/s² · t

9.81 m/s² · t / 85.0 m/s = sin θ

Replacing sin θ in the equation of the vertical component of the position:

276 m = y0 + v0 · t · sin θ + 1/2 · g · t²    (y0 = 0)

276 m = 85.0 m/s · t · (9.81 m/s² · t /85. 0 m/s) - 1/2 · 9.81 m/s² · t²

276 m = 9.81 m/s² · t² - 1/2 · 9.81 m/s² · t²

276 m = 1/2 · 9.81 m/s² · t²

276 m / ( 1/2 · 9.81 m/s²) = t²

t = 7.50 s

Now, we can calculate the angle θ using the equation obtained above:

9.81 m/s² · t / 85.0 m/s = sin θ

9.81 m/s² · 7.50 s / 85.0 m/s = sin θ

θ = 59.9°

She should launch the balloon at an angle of 59.9° above the horizontal.

You might be interested in
A developer wants to build a sprawling two-story office complex. The developer's and architect's vision is something low, modern
Lera25 [3.4K]

Answer:

a. directive zoning

Explanation:

Directive zoning is an instrument used in master plans, whereby the city is divided into areas on which differentiated land use and land use guidelines apply, especially urban indexes. Directive zoning acts primarily by controlling two main elements: the use and size (or size) of lots and buildings. It is therefore assumed that the end result achieved through individual actions is in line with the municipality's objectives, which include proportionality between occupation and infrastructure, the need to protect fragile areas and / or cultural interest, the harmony from the volumetric point of view, etc.

4 0
2 years ago
A projectile is launched horizontally east at a speed of 29.4 M/s towards a wall 88.2 m away. What is the velocity of the projec
Drupady [299]

Time before projectile hits wall

= 88.2 m / 29.4 m/s = 3 seconds

Vertical velocity of projectile after three seconds

= 3*9.8 = 29.4 m/s

Horizontal velocity of projectile after three seconds, assuming no air resistance

= 29.4 m/s  (given)

Conclusion:

velocity of projectile when it hits the wall

= < 29.4, -29.4> m/s

= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal

= 41.58 m/s east-bound at 45 degrees below horizontal.

6 0
2 years ago
A wave has a frequency of 34 Hz and a wavelength of 2.0 m. What is the speed of the wave? Use . A. 17 m/s B. 36 m/s C. 0.059 m/s
mel-nik [20]
F= (speed)/(wavelength)

Therefore, speed = Frequency x wavelength
  V = 68m/s
8 0
2 years ago
Read 2 more answers
The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
uranmaximum [27]

Since the tower base is square with a side length of  125 m,

Therefore,

(125\ m)^2+ (125\ m)^2=31250 m^2

Square root of 31250 = 176.776953 (Diameter) , so this is the diameter of the cylinder to enclose it, and radius, r = 88.38834765 m and height, h = 324 m.

The volume of cylinder,

=\pi r^2h=3.14(88.38834765 m)^2\times 324 m =7948168.803\ m^3

Thus, the mass of the air in the cylinder,

=1.225\ kg/m^3 \times 7948168.803\ m^3=9736506.78\ kg

Hence, the mass of the air in the cylinder is this more  than the mass of the tower.


4 0
1 year ago
Water is to be boiled at sea level (1 atm pressure) in a 30-cm-diameter stainless steel pan placed on top of a 18-kW electric bu
Tamiku [17]

Answer:

Explanation:

18 kW = 18000 J /s

60% of 18kW = 10800 J/s

Latent heat of evaporation of water

= 2260 x 10³ J / kg

kg of water being evaporated per second

= 10800 / 2260 x 10³ kg /s

= 4.7787 x 10⁻³ kg / s

= 4.78 gm / s .

3 0
1 year ago
Other questions:
  • The pesticide DDT was first made by a chemical company in 1939 and became widely used worldwide. Evidence that DDT builds up in
    5·2 answers
  • What is the risk when a pwc passes too closely behind another boat?
    12·1 answer
  • Bonnie and clyde are sliding a 300 kg bank safe across the floor to their getaway car. the safe slides with a constant speed if
    14·1 answer
  • While a roofer is working on a roof that slants at 38.0 ∘ above the horizontal, he accidentally nudges his 95.0 n toolbox, causi
    13·1 answer
  • What best describes myotibrils
    12·1 answer
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • A diode vacuum tube consists of a cathode and an anode spaced 5-mm apart. If 300 V are applied across the plates. What is the ve
    13·1 answer
  • Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
    11·1 answer
  • A 50-kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the power output for this rapid start?
    12·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!